
Coding test

General Instructions

1. There are 2 tasks

2. Write code in python with either the pytorch or tensorflow libraries in a sin-
gle jupyter notebook to solve the 2 tasks below

3. Run the code, make sure it shows all the results and submit the pdf of the
execution. Use plots to show the training and testing losses.
Do not print out the text list with the loss minimization steps!

4. I will look at how you formulate the task and how you implement the ideas

5. You are not expected to perform demanding training. Use COLAB if you do
not have access to GPUs.

Content of the Jupyter Notebook

1. code to define and train the neural networks

2. code to demonstrate the performance of the trained model on the test set

3. visualization of the performance of the trained model on the test set

4. visualization of the quantitative performance during training and on the test
set

5. text to explain how the tuning and the final performance evaluation are done

6. write comments in the notebook that explain your reasoning and what each
function does.

1



Task # 1: Denoising Autoencoders
Do not print out the text list with the loss minimization steps!

1. Model Training: Train a denoising autoencoder using a dataset of 100
grayscale natural images, each of size 64× 64 pixels.
The dataset must have natural images (e.g., animals, houses etc);

2. Noise Model: Corrupt the input images with Gaussian noise. Choose a noise
level such that both the image content and the added noise are clearly visible
in the noisy inputs.

3. Performance Evaluation:

• Compute the reconstruction error (find out suitable metrics for this
task) for both the training and test sets.

• Present the errors in a table (optional: show also in a plot the loss –
Y axis – against training time – X axis – on both the training and test
sets).

• Include visual examples of reconstructed images from both the training
and test sets.

• Ensure that test images were not used during training and are corrupted
using the same Gaussian noise level.

4. Analysis: Describe and discuss your observations. What do the reconstruc-
tion results tell you about the model’s performance and generalization?

2



Task # 2: Encoding Image Ordering
Do not print out the text list with the loss minimization steps!

Description We consider a task involving two neural models: a sender S and a
receiver R. The goal is to train S to communicate a binary message indicating the
order of a pair of images.

• The sender S receives a pair of images, stacked vertically (concatenated in
the channel axis) in a specific order (e.g., image A on top and image B on
bottom), and is tasked with outputting a binary message m ∈ {0, 1} that
encodes this order.

• The receiver R receives the same two images as S, but in stacked a randomly
shuffled order. It also receives the binary message m from S.

• Using the message and the input image pair, R must decide whether the order
of the images it received matches the original order that S observed.

Implementation

1. Feasibility and Strategy: Discuss the feasibility of the task. Consider what
strategies the sender model S and receiver model R might learn to success-
fully encode and decode the image ordering using a single-bit message.

2. Data Preparation: Use a subset of 100 randomly selected images from the
CIFAR-10 dataset. Do not use the labels or restrict the selection to specific
categories; simply sample the images uniformly at random.

3. Model Architecture and Training: Design simple yet effective deep neural
network architectures for both S (the sender) and R (the receiver). Keep the
architectures as minimal as possible to maintain clarity and efficiency.

4. Training Procedure: Train both models jointly or in sequence on the pre-
pared dataset. Track the training progress by plotting the training loss over
the course of iterations.

5. Evaluation: After training, compute the final classification error rate of the
receiver model R on the training set. Present the results in a concise table
format.

6. Performance Analysis: Discuss the overall performance of the models.
Consider how well the task was solved, potential bottlenecks or failure cases,
and whether the models appear to have learned an effective communication
protocol.

3


