Problem Set

Problem # 1

Assume that x_0 is a solution to the following linear system

$$Ax_0 = b$$

where A is an $n \times m$ matrix, with $n < m$, x_0 is an m-dimensional column vector and b is an n-dimensional column vector. Show that the L^2 norm of x_0 can be arbitrarily larger than the norms of A and b.

Problem # 2

Write the explicit formula of the gradient of

$$E[u] = \sum_{i=2}^{n-1} \sum_{j=2}^{m-1} \cos \left((u[i+1,j] - u[i,j-1])^2 \right)$$

with respect to the variable u, which is an $n \times m$ matrix. Show all the steps of your calculations.

Problem # 3

Write the explicit formula of the maximum likelihood estimator for the covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$ of the following probability density function

$$p(x; \mu, \Sigma) \propto e^{-\frac{(x - \mu)\top \Sigma^{-1}(x - \mu)}{2}}$$

given m independent and identically distributed samples $x^{(1)}, \ldots, x^{(m)}$. Assume that the covariance Σ is diagonal, but the non-zero values can be all different from each other. Show all the steps of your calculations and justify them. Do not just write the final formula.