
A Geometri Approah to Blind Deonvolutionwith Appliation to Shape from Defous�Stefano Soatto and Paolo FavaroWashington University, One Brookings dr. 1127, St.Louis - MO 63130.fsoatto,favag�ee.wustl.eduAbstratWe propose a solution to the generi \bilinear alibration-estimation problem" when using a quadrati ost funtionand restriting to (loally) translation-invariant imagingmodels. We apply the solution to the problem of reon-struting the three-dimensional shape and radiane of asene from a number of defoused images. Sine the imag-ing proess maps the ontinuum of three-dimensional spaeonto the disrete pixel grid, rather than disretizing theontinuum we exploit the struture of maps between (�nite-and in�nite-dimensional) Hilbert spaes and arrive at aprinipled algorithm that does not involve any hoie ofbasis or disretization. Rather, these are uniquely deter-mined by the data, and exploited in a funtional singularvalue deomposition in order to obtain a regularized solu-tion.1 IntrodutionAn imaging system, suh as the eye or a video-amera,involves a map from the three-dimensional environmentonto a two-dimensional surfae. In order to retrieve thespatial information lost in the imaging proess, one anrely on prior assumptions on the sene and use pitorialinformation suh as shading, texture, ast shadows, edgeblur et.. All pitorial ues are intrinsially ambiguousin that prior assumptions annot be validated: given aphotograph, it is always possible to onstrut (in�nitelymany) di�erent three-dimensional senes that have it astheir image.As an alternative to relying on prior assumptions, onean try to retrieve spatial information by looking at dif-ferent images of the same sene taken, for instane, fromdi�erent viewpoints (parallax), suh as in stereo and mo-tion1. In addition to hanging the position of the imaging�This researh was supported by NSF grant IIS-9876145 andARO grant DAAD19-99-1-0139. The authors wish to thank JohnC. Shotland and Joseph A. O'Sullivan for their enlightening sug-gestions, and Shree Nayar for kindly providing us with test data.1Note that we must still rely on prior assumptions on photometryin order to solve the orrespondene problem.

devie, one an hange its geometry. For instane, one antake di�erent photographs of the same sene with di�er-ent lens apertures or foal lengths. Similarly, in the eyeone an hange the shape of the lens by ating on the lensmusles. There is a sizeable literature on algorithms toreonstrut shape from a number of images taken with dif-ferent imaging geometry (shape from defous) or from aontrolled searh over geometri parameters (shape fromfous) [4℄.Estimating shape from fous/defous boils down toinverting ertain integral equations, a problem known bydi�erent names in di�erent ommunities: in signal pro-essing it is \blind deonvolution", in ommuniationsand information theory \soure separation", in image pro-essing \restoration" or \deblurring", in tomography \in-verse sattering", in omputer vision \generi alibration-estimation problem" [10℄. Sine images depend both onthe shape of the sene and on its reetane properties{ neither of whih is known { estimating shape is tightlyrelated to estimating reetane. In this paper we on-sider the two problems as one and the same and disussthe reonstrution of both2.The image formation proess naturally takes plae inthe ontinuum of three-dimensional spae, while imagedata are typially aquired on a disrete grid (e.g. theCCD array). Most algorithms in the literature entail adisretization in one way or another (sampling, deompo-sition of funtions in the ontinuum into a ombinationof basis funtions et.), leaving the obvious problem ofhoosing the order of the disretization or the basis tothe disretion of the user.In this paper we propose a novel solution to the prob-lem of reonstruting the shape and radiane of a senewhen using a quadrati ost funtion and restriting toinvariant integral kernels. Rather than approximating theontinuum with a disretization, in our approah the sizeof the measurement array naturally imposes regularityin the solution, whih is obtained in in�nite-dimensionalspae using a funtional SVD (singular value deomposi-tion). We exploit the geometry of Hilbert spaes, whih2Sine neither the light soure nor the viewer move, we do notdistinguish between radiane and reetane of a surfae.



makes the analysis simple and intuitive. Our solution re-sults in a straightforward and eÆient algorithm that isprovably optimal and does not involve any hoie of ba-sis or disretization: all of these are determined by thedata. We present results on real and simulated imagesthat indiate the potential of our tehnique.1.1 Statement of the problemWe are interested in inverting integral equations of theform3 I(x; y) = Z h(x; y)dR (x; y) 2 D (1)by �nding a measure R and a kernel h that satisfy theequation where I is measured on a ompat disrete lat-tie4 D � IR2.In order for the problem to admit a nontrivial solution,something needs to be known about the kernel h. Weassume that it belongs to a parametri lass of funtionswhere some of the parameters { whih we all u { areknown while others { whih we all � { are not. We writethis by indiizing the kernel h�u with u a vetor of knownparameters. For any u, h�u belongs to a family of kernelsthat we indiate with H� : H� = fh�u j � 2 �g where � isa ompat set in IRs for some s. Even so, the problem iswell-known to be ill-posed. In general a solution does notexist, due to the fat that (1) is only an approximationof the model that generates the data. We will thereforelook for solutions that minimize a suitable optimizationriterion, for instane a regularized norm k � k:ĥ; R̂ := arg minh�u2H�; R knk subjet to (2)I(x; y) = Z h�u(x; y)dR+ n(x; y) 8 (x; y) 2 D: (3)Remark 1 (Choie of optimization riterion) In hisseminal paper [5℄, Csisz�ar presents a derivation of \sensi-ble" optimization riteria for the problem above, and onludesthat the only two that satisfy a set of onsisteny axioms arethe two-norm { whih we address in this paper { and theinformation-divergene { whih we address in [8℄. The tworiteria result in radially di�erent solutions, for in the �rstase we an exploit the geometry of Hilbert spaes, while in theseond we have to resort to the tools of alulus of variations.1.2 MotivationsIn digital images, the brightness value reorded at a pixel(xi; yj) is obtained by integrating the energy radiated bya ertain region of spae that depends upon the optialproperties of the imaging system (h) as well as on the3See setion 2.1 for more details on the notation.4When R is �nite-dimensional, suh as in point-wise aÆne stru-ture from motion, we have that I = HR and the problem is knownas \fatorization".

physial properties of the environment (R). Typially,neither is known. While data are reorded in a disretedomain D (the pixel array), integration is naturally per-formed in the ontinuum IR3.Consider for instane a pieewise smooth surfae inspae, parameterized by �. Consider then an imagingsystem whose geometry an - to a ertain extent - bemodi�ed by ating on some parameters u 2 U � IRk forsome k. For instane, u ould be the aperture radius ofthe lens and the foal length. Due to the additive natureof energy transport phenomena, the image is obtained byintegrating the distribution R against a kernel h that de-pends upon � and u. The generative model for the image(i.e. the model that generates the measurements I) istherefore of the form (1). We are interested in estimatingthe shape of the surfae � and the energy distribution R -also alled radiane - to the extent possible, by measuringa number L of images obtained with di�erent amera set-tings u1; : : : ; uL. We want to exploit the fat that, whilethe energy distribution is naturally integrated in spae,measurements are taken on a grid. As we will see, ratherthan using approximations, this will result in a naturalway of enforing regularity in the solution.1.3 Relation to previous workIn the literature of omputational vision a number ofalgorithms have been proposed to estimate depth fromfous/defous. The most ommon assumption is thatthe sene is a plane parallel to the foal plane (equifoalassumption)[2, 6, 7, 12, 14, 15, 16, 17, 18, 19, 20℄. Thispaper is related to all of the above, sine it also relies onthe equifoal assumption.The apability to reonstrut the sene's shape de-pends upon the energy distribution it radiates. The on-ditions on the radiane distribution that allow a uniquereonstrution of shape have been reently derived in [13℄.Our method an be extended to solve a wider lass ofproblems, as disussed by Koenderink and Van Doorn in[10℄.There is also a vast body of related literature in thesignal proessing ommunity, where the problem is knownas \blind deonvolution" (or more generally \deblurring").The equifoal assumption is equivalent to assuming ashift-invariant onvolution kernel, whih is also ommonto most of the literature. The interested reader an seethe speial issue [1℄ for referenes.2 An operatorial solutionIn this setion we introdue the ore of our algorithm. Wework in funtion spae and use the geometry of operatorsbetween Hilbert spaes. For basi results on operators



between �nite and in�nite-dimensional Hilbert spaes see,for instane, [11℄.2.1 NotationIf we ollet a number of images with di�erent ontrolparameters ul and organize them into an arrayI := [Iu1 ; : : : ; IuL ℄T , and so for the kernels hul , we an getrid of the subsript u and write I(x; y) = R h�(x; y)dRfor (x; y) 2 D. The right-hand side an be interpreted asthe \virtual image" of a given surfae � radiating energywith a given (spatial) distribution R,R(X;Y; Z): R h�(x; y;X; Y; Z)dR(X;Y; Z). For senesmade with opaque objets, the integral is restrited totheir surfae, and therefore it is to be interpreted in theRiemannian sense [3℄. In oordinates we write the in-tegral as R h�(x; y; ~x; ~y)r(~x; ~y)d~xd~y for (x; y) 2 D and asuitably hosen parameterization (~x; ~y) 2 IR2; we all rthe radiant density5. Sine the image I is measured onthe pixel grid, the domain D (i.e. a path in the image)is D = [x1; : : : ; xN ℄� [y1; : : : ; yM ℄, so that we haveI(xi; yj) = Z h�(xi; yj ; ~x; ~y)r(~x; ~y)d~xd~y (4)for i = 1 : : :N; j = 1 : : :M: We now want to write theabove equation in a more onise form. To this end,onsider the Hilbert spae L2(IR2), with inner produthh�; �ii : L2 �L2 �! IR de�ned by(f; g) 7! hhf; gii := Z f(x; y)g(x; y)dxdy (5)and norm kfk := phhf; fii. Consider also the spaeIRLN�M � IRLNM with the inner produt h�; �i : IRLN�M�IRLN�M �! IR de�ned by(A;B) 7! hA;Bi := TraefABT g: (6)and norm jAj =phA;Ai. If we interpret points in IRLN�Mas LMN -dimensional vetors, then the inner produt isthe usual ha; bi := aT b. We all the integer LMN = K.2.2 Formalization of the problemIf we model6 the radiant density r as a point in L2(IR2),and the image I as a point in IRK , then the imaging5Stritly speaking, r is the Radon-Nikodym derivative of R and,as suh, it is not an ordinary funtion but, rather, a distributionof measures. In what follows we will ignore suh tehnialities andassume that we an ompute integrals and derivatives in the senseof distributions.6By hoosing to work on L2 we exlude automatially all har-moni funtions. We an do so beause it has been proven in [13℄that the harmoni omponent of the radiane does not arry shapeinformation, and therefore our hoie entails no loss of generality.

proess, as understood in (1), an be represented by anoperator H H : L2 �! IRK ; r 7! I = Hr: (7)In order to emphasize the dependene of H on �, we writeI = H(�)r: (8)This equation is just another way of writing (1). Theoriginal problem an therefore be stated, in more oniseform, as �̂; r̂ := arg min�2�;r2L2 jI �H(�)rj2 (9)for a suitable ompat set �. This notation is not only el-egant but also enlightening, for it will allow us to use thegeometry of operators between Hilbert spaes to arriveat a prinipled solution of the blind deonvolution prob-lem (3) that minimizes a quadrati ost funtion. Beforedoing so, we review some of the de�nitions that we willneed in the sequel.2.3 Adjoints and orthogonal projetorsThe bounded operator H : L2 ! IRK admits an adjointH� de�ned by the equationhHr; Ii = hhr;H�Iii 8 r 2 L2; I 2 IRK (10)from whih we get thatH� : IRK �! L2; I 7! hT (x; y)I: (11)The (Moore-Penrose) pseudo-inverse Hy : IRK �! L2 isde�ned suh that r = HyI solves the equationH�Hr = H�I (12)when it exists; with an abuse of notation7 we ould writeHy = (H�H)�1H�. The orthogonal projetorH? is thende�ned asH? : IRK �! IRK ; I 7! H?I = (Id �HHy)I (13)where Id is the identity in IRK�K . Note that this is a�nite-dimensional linear operator, represented thereforeby a matrix. The following proposition, whih extendsthe results of Golub and Pereyra [9℄, is the key to ourapproah to blind deonvolution:Proposition 1 Let �̂; r̂ be loal extrema of the fun-tional �(�; r) := jI �H(�)rj2 (14)7We have not de�ned the \inverse operator" (�)�1; however, inthe next setion we will give an expliit formula for the pseudo-inverse using the singular value deomposition.



and, assuming that Hy exists, let ~� be a loal extremumof the funtion  (�) := jH?(�)I j2: (15)Furthermore, let ~r be obtained from ~� by ~r := �(~�), where� is de�ned as �(�) := Hy(�)I: (16)Then �̂ is also a loal extremum of  (�), and ~�; ~r are alsoloal extrema of �(�; r).Proof: �̂ and r̂ are de�ned by the following oupled equations� ���� (�̂; r̂) = 0Dr�(�̂; r̂) = 0 (17)where Dr� stands for the Fr�ehet funtional derivative of �with respet to r [11℄. On the other hand, ~� and ~r are de�nedby � d d� (~�) = 0~r := �(~�): (18)Computing the derivatives expliitly, and indiating with a\dot" the derivative with respet to �, we have that ���� =2((H(�)r)T _H(�)r� IT _H(�)r) = 0, whih leads to(H(�)r̂)T _H(�̂)r̂ = IT _H(�̂)r̂ (19)while Dr� = 2(H�(�)H(�)r�H�(�)I) = 0 leads toH�(�̂)H(�̂)r̂ = H�(�̂)I: (20)Now, the last equation is what de�nes the pseudo-inverse Hy(see (12)), and therefore it is satis�ed, by onstrution, whenr̂ = Hy(�̂)I = �(�̂): (21)This shows that if �̂ is a stationary point of �, its orre-sponding r̂ must be of the form �(�̂). The omputation ofd d� = 2ITH? _H?(�)I an be obtained from H?Hr = 0 8 r,whih leads to _H?Hr+H? _Hr = 0, and hene to_H?(�) = �H?(�) _H(�)Hy(�): (22)(=) Let us now assume that ITH? _H?(~�)I = 0, and let ~r =�(~�). We want to show that ���� = 0, that is (19) is satis�edwith �̂ = ~� (that (20) is satis�ed follows diretly from ourhoie of ~r from (21)). To this end, we write8(Hr)T _Hr = IT (HHy +H?) _Hr = IT _Hr (23)where the seond term of the right hand side is zero from ourassumption that ITH? _H?(~�)I = 0 and the expression of _Hin (22).=)) Now let (19) and (20) hold for �̂; r̂. We want to showthat ITH? _H?(r̂)I = 0. To this end, we write (19) as9(HHyI)T _Hr = IT _Hr (24)so that, after rearranging terms, we get thatIT (Id�HHy) _HHyI = 0, but substituting the de�nition of _H?,we get that ITH? _H?(�̂)I = 0, whih allows us to onludethat (18) is satis�ed with � = �̂.8In the following we omit the argument ~� in order to simplifythe notation.9For simpliity we omit the argument �̂.

Remark 2 The signi�ane of the proposition above onsistsin the fat that, while (14) is an optimization problem onan in�nite-dimensional spae, (15) is on a �nite-dimensional(and often small) spae. Indeed, for the ase of shape fromfous/defous that we onsider, it is a one-dimensional spae.Note also that the statement is non-trivial: in fat, (15) is ob-tained by multiplying on the left (1) by the singular matrix H?.This an add spurious solutions to the problem, as we know bysolving linear systems of equations10. The proposition showsthat, in this spei� ase, this does not happen.The onditions, however, impose the existene of the pseudo-inverse, whih is equivalent to assuming r belongs to a �nite-dimensional subspae of L2 of dimension less than K.2.4 Invariant kernels and the SVDIn order to solve (15) we must be able to ompute H?.This, naturally, depends upon the operator H . A bighelp in the solution omes by assuming that H is shift-invariant, so that Hr an be represented as a onvolu-tion produt h � r. In the ase of depth from defous,this is equivalent to approximating the sene (loally) bya planar path parallel to the lens at depth �. In thisase, solving (15) redues to a simple one-dimensionaloptimization problem, that an be solved in a variety ofways (Newton-Raphson, gradient desent, disrete searhet.)11. The problem, therefore, boils down to omputingH?.In order to do so, we want to express the operator Husing its (in�nite-dimensional) singular value deomposi-tion. To this end, let f�kg, k = 1; : : : ;1 be a sequeneof positive salars sorted in dereasing order, fIkg an or-thonormal set in IRK and frkg an orthonormal set in L2.We now look for the partiular hoie of suh sets thatallows us to express H asH = KXk=1�krkIk: (25)Note that H maps L2 onto IRK as followsr 7! Hr = KXk=1�kIk Z rk(x; y)r(x; y)dxdy: (26)Assuming that the pseudo-inverse exists, it is easy to ver-ify that it is given byHy = KXk=1 ��1k rkITk (27)10For instane, the solution of Ax = 0 is fx 2 Null(A)g, whilethe solution to BAx = 0 is fx 2 Null(a)g [ fx j Ax 2 Null(B)g.11The equifoal assumption is very powerful, but equally danger-ous, as we have pointed out in [13℄. Here we will assume that theequifoal assumption is satis�ed in a small path of the image. Thiswill allow us to resolve boundaries within a preision equal to thesize of the path.



while the orthogonal projetor isH? = Id � KXk=1 IkITk : (28)In order for the pseudo-inverse to exist, we need to assumethat the singular values �k are zero for k greater than aninteger � < K. This is equivalent to assuming that theradiane belongs to a �nite-dimensional subspae of L2,whih imposes a lower bound on the dimensionality of thedata to be aquired (number of blurred images and theirsize).The sequenes f�kg; frkg and fIkg are found by solv-ing the normal equations:�H�Hrk = �2krkHH�Ik = �2kIk k = 1 : : : � (29)or, making the notation expliit�R hT (x; y)h(~x; ~y)rk(~x; ~y)d~xd~y = �2krk(x; y)R h(x; y)hT (x; y)Ikdxdy = �2kIk (30)for k = 1 : : :K. The seond of the normal equations (30)an be written asMIk = �2kIk k = 1 : : : � (31)where M is the K-dimensional square symmetri matrixR h(x; y)hT (x; y)dxdy. Sine this is a (�nite-dimensional)symmetri eigenvalue problem, there exists a unique de-omposition of M of the formM = U�2UT (32)with UTU = Id, �2 = diagf�21 : : : �2�g and U = [I1; : : : ; I�℄.We are now left with the �rst equation in (30) in orderto retrieve rk(x; y). However, instead of solving that di-retly, we use the adjoint operator H� to map the basisof IRK onto a basis of a �-dimensional subspae of L2 viaH�Ik = �krk . Making the notation expliit we haverk(x; y) = 1�k hT (x; y)Ik k = 1 : : : �: (33)Remark 3 (Regularization) In the omputation of H?,the sum is e�etively trunated at k = � < K, where the di-mension K depends upon the amount of data aquired. Asa onsequene of the properties of the SVD, the solution ob-tained enjoys a number of regularity properties. Note that thesolution is not the one that we would have obtained by �rstwriting r using a trunated orthonormal expansion in L2, thenexpanding the kernel h in (1) in series, and then applying the�nite-dimensional version of the orthogonal projetion theo-rem.Remark 4 (Dimensions) Just to give the reader an ideaon the dimensions at play, usually the normal equations are

solved loally in a path around eah point in the image. Inorder for the invariane assumption on the kernel to hold, suhwindows are usually kept of sizes M �N in the order of 3� 3pixels to 10 � 10 pixels. Typially between L = 2 and L = 4images are aquired. We hoose N = M = 5 and L = 2,thereby having to ompute the SVD of matries of size 50. Allthese SVDs an be pre-omputed.We now have all the ingredients to write the reipe.2.5 Blind deonvolution algorithm1) Construt the matrix12M(�) = Z h�(x; y)h�T (x; y)dxdy:2) Compute its SVD: M(�) = U�2UT . LetH?(�) = Id � UT� U�where U� is the matrix built with the �rst � olumnsof U .3) Minimize the norm13 jH?(�)I j with respet to thedepth of the path �. Call the minimizer �̂.4) Restore the radiane14r̂(x; y) = h�̂T (x; y)U ��invwhere ��inv = [��11 ; : : : ; ��1� ℄T .Notie that the steps 1)�2) an be pre-omputed o�-linefor any given value of �.Remark 5 (Tradeo�s) There is a tradeo� between mem-ory and omputational speed. Choosing a loal desent algo-rithm in 3), one only needs to store one K�K matrix, but thenneeds to ompute H?(�) at eah step of the iteration. Optingfor a disrete searh, instead, one needs to store H?(�i) for anumber of depths �i, but then only the produt H?(�i)I needsto be omputed at eah depth.Following the derivations in the previous setion, as aonsequene of proposition 1 and the properties of theSVD, we an onlude that12For ertain families of kernels, suh as Gaussian ones, the inte-gral an be omputed in losed-form without therefore any approx-imation.13There are a number of ways in whih this an be done. Al-though there exists no losed-form solution, loal gradient meth-ods, tangent methods, Newton methods are all viable possibilities.Another alternative onsists in pre-omputing H?(�) for a numberof �s (however many are neessary in order to ahieve the desiredresolution in depth), and then simply ompute jH?(�i)Ij for all i.Choose the i that leads to the smallest norm, all �̂ := �i.14If all we are onerned with is the depth �, this step an beomitted.



Proposition 2 The algorithm desribed in 1){4) on-verges to a loal extremum of the problem (3) for an in-variant kernel and a quadrati ost funtion.Remark 6 (Observability) The onditions under whihshape an be uniquely reonstruted from blurred images de-pend upon the radiane of the sene. As it stands, the algo-rithm desribed in setion 2.5 seems to return an answer atevery point, regardless for the radiane. However, in the pres-ene of radianes whih are not \suÆiently exiting" (see [13℄for rigorous de�nitions and haraterizations), step 3) of thealgorithm 2.5 will return a at pro�le that is independent of�. This is easy to test, and it is possible to assoiate the loalurvature of the funtion �(�) := jH?(�)Ij with a reliabilitymeasure for the loalization of depth, as in �gure 6.It would be desirable if suh onditions ould be stated di-retly in terms of the data I, so as to avoid useless omputa-tions at points where depth annot be reovered (for instanewhere the radiane is harmoni). A thorough analysis of thisaspet of the algorithm is still under way.3 ExperimentsIn this setion we desribe an implementation of the al-gorithm presented in setion 2.5 for the ase of Gaus-sian kernels. We hoose Gaussians not beause they area good model of the imaging proess, but beause theymake the analysis and the implementation of the algo-rithm straightforward. The algorithm does not dependupon this hoie, and indeed we are in the proess ofbuilding realisti models for the kernels of ommerialameras.3.1 Gaussian kernelsOne of the simplest families of kernels are the Gaussians,whih have the property of being invariant with respetto onvolution. It turns out that this hoie is often usedin the literature. We reall that the kernel h is a (olumn)vetor obtained by staking the kernels h�ul(xi; yj) on topof eah other, so we only need to speify the generi ker-nel, whih ishul(xi; yj ; x; y) = 1p2��(ul; �)e� 12 (xi�x)2+(yj�y)2�(ul;�)2 (34):= h0(xi � x; yj � y; ul) (35)where the \blur radius" � depends both on the foallength of image l, ul, and on the depth of the path be-ing onsidered, �. We organize the kernels into a vetor,ompute the matrixM(�) in losed form and evaluate ito�-line for 200 values of �. We then ompute their SVDand follow the steps of the algorithm 2.5.Remark 7 (User's hoies) Of ourse, real senes do notsatisfy the equifoal assumption if not loally away from dis-ontinuities. Therefore, we run the algorithm on small pathes

around eah point on the image, ontent with having onsis-tent results only away from disontinuities15. Sine the hoieof a family of kernels omes from a model of the optis of theamera, the size of the pathes is the only hoie involved inimplementing our algorithm. We hoose it to be 5� 5 pixels,as a tradeo� between the validity of the equifoal assumptionand ompensation for noise.Having pre-omputed H?(�) at 200 values of �, the al-gorithm requires 510KFlops at eah point. Sine theseoperations are all independent, and therefore highly par-allelizable, there is potential for real-time operation onommerial hardware.A detailed experimental analysis of the performaneof the algorithm is best arried out on arefully ontrolledsimulations. However, for the purpose of illustration ofthe funtioning of the algorithm on real images, we showthe results on sets of images provided to us by Watan-abe and Nayar (�gures 1 and 6). Although no rigorous

Figure 1: (Top) Two images taken with di�erent foallengths, ourtesy of Watanabe and Nayar [18℄. The two fo-al planes are very lose so the di�erene between near (left)and far (right) is barely visible. (Bottom) Unaltered depthpro�le as estimated by the algorithm. Graysale values areproportional to the depth of the sene relative to the �rst fo-al plane. Although we have no rigorous evaluation of theestimation error, the qualitative shape of the sene is visible.ground truth is available, the qualitative shape of the15Extending the algorithm to disontinuities is part of our re-searh agenda.



sene seems to have been aptured. In this experiment,the algorithm runs on 2 images, with pathes of dimension5�5. These onditions are hallenging for the algorithm,sine it fores the rank of the orthogonal projetor H?to be at most 50. However, the behavior of the algo-

Figure 2: Smoothed mesh of estimated depth for the sene in�gure 1. Two images have been used.rithm substantially improves when more than two imagesare available. As shown in �gure 3, the average error in asequene of 50 trials dereases signi�antly with the num-ber of input images. Furthermore, for a onstant number
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Figure 3: Average reonstrution error (in absolute value) asa funtion of the number of input images for 50 trials of thesame experiment. Performane improves dramatially withmore than 2 images.of images, the average reonstrution error is not uni-form aross the depth �eld, as shown in �gure 4. Just togive the reader an idea on the pro�le of the residual ostfuntion, whih is minimized with respet to the depth ofthe path at eah step, we report an example in �gure 5,where it an be seen that the residual is neither smooth
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Figure 4: Average reonstrution error as a funtion of depthfor 50 trials of the same experiment. Three blurred imageshave been used.nor onvex. In �gure 6 we show the reonstrution of areal sene together with a measure of its reliability.
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Figure 5: Example of residual to be minimized jH?(�)Ij: no-tie that it is non-smooth and non-onvex. The true minimum- indiated by a ross - and the estimated one - indiated by asquare - oinide. Asterisks indiate the foal planes of imagedata.4 ConlusionsWe have proposed a solution to the problem of reon-struting the shape and radiane of a sene when usinga quadrati ost funtion under invariant integral imag-ing models. Rather than approximating the ontinuumwith a disretization, in our approah the size of the mea-surement array naturally imposes regularity in the solu-tion, whih is obtained in in�nite-dimensional spae us-ing a funtional singular value deomposition. We use thestruture of maps between (�nite and in�nite-dimensional)Hilbert spaes, whih makes the analysis simple and in-tuitive. Our solution results in a straightforward and ef-�ient algorithm that does not involve any tuning, hoie
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Figure 6: (Top) Two images taken with di�erent foallengths, ourtesy of Watanabe and Nayar [18℄. The di�er-ene between the two images is barely visible, sine the twofoal planes are very lose. (Center) Reonstruted (relative)unaltered depth pro�le. (Bottom) reliability parameter om-puted from the loal urvature of the residual funtion aroundits minimum. As it an be seen, the estimates of depth or-responding to the uniform region of the bakground have ahigh unertainty assoiated to them. Note that at oludingboundaries unertainty is judged to be low by the algorithm,although the atual estimates are unreliable due to the viola-tion of the equifoal assumption.


