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onvolutionwith Appli
ation to Shape from Defo
us�Stefano Soatto and Paolo FavaroWashington University, One Brookings dr. 1127, St.Louis - MO 63130.fsoatto,favag�ee.wustl.eduAbstra
tWe propose a solution to the generi
 \bilinear 
alibration-estimation problem" when using a quadrati
 
ost fun
tionand restri
ting to (lo
ally) translation-invariant imagingmodels. We apply the solution to the problem of re
on-stru
ting the three-dimensional shape and radian
e of as
ene from a number of defo
used images. Sin
e the imag-ing pro
ess maps the 
ontinuum of three-dimensional spa
eonto the dis
rete pixel grid, rather than dis
retizing the
ontinuum we exploit the stru
ture of maps between (�nite-and in�nite-dimensional) Hilbert spa
es and arrive at aprin
ipled algorithm that does not involve any 
hoi
e ofbasis or dis
retization. Rather, these are uniquely deter-mined by the data, and exploited in a fun
tional singularvalue de
omposition in order to obtain a regularized solu-tion.1 Introdu
tionAn imaging system, su
h as the eye or a video-
amera,involves a map from the three-dimensional environmentonto a two-dimensional surfa
e. In order to retrieve thespatial information lost in the imaging pro
ess, one 
anrely on prior assumptions on the s
ene and use pi
torialinformation su
h as shading, texture, 
ast shadows, edgeblur et
.. All pi
torial 
ues are intrinsi
ally ambiguousin that prior assumptions 
annot be validated: given aphotograph, it is always possible to 
onstru
t (in�nitelymany) di�erent three-dimensional s
enes that have it astheir image.As an alternative to relying on prior assumptions, one
an try to retrieve spatial information by looking at dif-ferent images of the same s
ene taken, for instan
e, fromdi�erent viewpoints (parallax), su
h as in stereo and mo-tion1. In addition to 
hanging the position of the imaging�This resear
h was supported by NSF grant IIS-9876145 andARO grant DAAD19-99-1-0139. The authors wish to thank JohnC. S
hotland and Joseph A. O'Sullivan for their enlightening sug-gestions, and Shree Nayar for kindly providing us with test data.1Note that we must still rely on prior assumptions on photometryin order to solve the 
orresponden
e problem.

devi
e, one 
an 
hange its geometry. For instan
e, one 
antake di�erent photographs of the same s
ene with di�er-ent lens apertures or fo
al lengths. Similarly, in the eyeone 
an 
hange the shape of the lens by a
ting on the lensmus
les. There is a sizeable literature on algorithms tore
onstru
t shape from a number of images taken with dif-ferent imaging geometry (shape from defo
us) or from a
ontrolled sear
h over geometri
 parameters (shape fromfo
us) [4℄.Estimating shape from fo
us/defo
us boils down toinverting 
ertain integral equations, a problem known bydi�erent names in di�erent 
ommunities: in signal pro-
essing it is \blind de
onvolution", in 
ommuni
ationsand information theory \sour
e separation", in image pro-
essing \restoration" or \deblurring", in tomography \in-verse s
attering", in 
omputer vision \generi
 
alibration-estimation problem" [10℄. Sin
e images depend both onthe shape of the s
ene and on its re
e
tan
e properties{ neither of whi
h is known { estimating shape is tightlyrelated to estimating re
e
tan
e. In this paper we 
on-sider the two problems as one and the same and dis
ussthe re
onstru
tion of both2.The image formation pro
ess naturally takes pla
e inthe 
ontinuum of three-dimensional spa
e, while imagedata are typi
ally a
quired on a dis
rete grid (e.g. theCCD array). Most algorithms in the literature entail adis
retization in one way or another (sampling, de
ompo-sition of fun
tions in the 
ontinuum into a 
ombinationof basis fun
tions et
.), leaving the obvious problem of
hoosing the order of the dis
retization or the basis tothe dis
retion of the user.In this paper we propose a novel solution to the prob-lem of re
onstru
ting the shape and radian
e of a s
enewhen using a quadrati
 
ost fun
tion and restri
ting toinvariant integral kernels. Rather than approximating the
ontinuum with a dis
retization, in our approa
h the sizeof the measurement array naturally imposes regularityin the solution, whi
h is obtained in in�nite-dimensionalspa
e using a fun
tional SVD (singular value de
omposi-tion). We exploit the geometry of Hilbert spa
es, whi
h2Sin
e neither the light sour
e nor the viewer move, we do notdistinguish between radian
e and re
e
tan
e of a surfa
e.



makes the analysis simple and intuitive. Our solution re-sults in a straightforward and eÆ
ient algorithm that isprovably optimal and does not involve any 
hoi
e of ba-sis or dis
retization: all of these are determined by thedata. We present results on real and simulated imagesthat indi
ate the potential of our te
hnique.1.1 Statement of the problemWe are interested in inverting integral equations of theform3 I(x; y) = Z h(x; y)dR (x; y) 2 D (1)by �nding a measure R and a kernel h that satisfy theequation where I is measured on a 
ompa
t dis
rete lat-ti
e4 D � IR2.In order for the problem to admit a nontrivial solution,something needs to be known about the kernel h. Weassume that it belongs to a parametri
 
lass of fun
tionswhere some of the parameters { whi
h we 
all u { areknown while others { whi
h we 
all � { are not. We writethis by indi
izing the kernel h�u with u a ve
tor of knownparameters. For any u, h�u belongs to a family of kernelsthat we indi
ate with H� : H� = fh�u j � 2 �g where � isa 
ompa
t set in IRs for some s. Even so, the problem iswell-known to be ill-posed. In general a solution does notexist, due to the fa
t that (1) is only an approximationof the model that generates the data. We will thereforelook for solutions that minimize a suitable optimization
riterion, for instan
e a regularized norm k � k:ĥ; R̂ := arg minh�u2H�; R knk subje
t to (2)I(x; y) = Z h�u(x; y)dR+ n(x; y) 8 (x; y) 2 D: (3)Remark 1 (Choi
e of optimization 
riterion) In hisseminal paper [5℄, Csisz�ar presents a derivation of \sensi-ble" optimization 
riteria for the problem above, and 
on
ludesthat the only two that satisfy a set of 
onsisten
y axioms arethe two-norm { whi
h we address in this paper { and theinformation-divergen
e { whi
h we address in [8℄. The two
riteria result in radi
ally di�erent solutions, for in the �rst
ase we 
an exploit the geometry of Hilbert spa
es, while in these
ond we have to resort to the tools of 
al
ulus of variations.1.2 MotivationsIn digital images, the brightness value re
orded at a pixel(xi; yj) is obtained by integrating the energy radiated bya 
ertain region of spa
e that depends upon the opti
alproperties of the imaging system (h) as well as on the3See se
tion 2.1 for more details on the notation.4When R is �nite-dimensional, su
h as in point-wise aÆne stru
-ture from motion, we have that I = HR and the problem is knownas \fa
torization".

physi
al properties of the environment (R). Typi
ally,neither is known. While data are re
orded in a dis
retedomain D (the pixel array), integration is naturally per-formed in the 
ontinuum IR3.Consider for instan
e a pie
ewise smooth surfa
e inspa
e, parameterized by �. Consider then an imagingsystem whose geometry 
an - to a 
ertain extent - bemodi�ed by a
ting on some parameters u 2 U � IRk forsome k. For instan
e, u 
ould be the aperture radius ofthe lens and the fo
al length. Due to the additive natureof energy transport phenomena, the image is obtained byintegrating the distribution R against a kernel h that de-pends upon � and u. The generative model for the image(i.e. the model that generates the measurements I) istherefore of the form (1). We are interested in estimatingthe shape of the surfa
e � and the energy distribution R -also 
alled radian
e - to the extent possible, by measuringa number L of images obtained with di�erent 
amera set-tings u1; : : : ; uL. We want to exploit the fa
t that, whilethe energy distribution is naturally integrated in spa
e,measurements are taken on a grid. As we will see, ratherthan using approximations, this will result in a naturalway of enfor
ing regularity in the solution.1.3 Relation to previous workIn the literature of 
omputational vision a number ofalgorithms have been proposed to estimate depth fromfo
us/defo
us. The most 
ommon assumption is thatthe s
ene is a plane parallel to the fo
al plane (equifo
alassumption)[2, 6, 7, 12, 14, 15, 16, 17, 18, 19, 20℄. Thispaper is related to all of the above, sin
e it also relies onthe equifo
al assumption.The 
apability to re
onstru
t the s
ene's shape de-pends upon the energy distribution it radiates. The 
on-ditions on the radian
e distribution that allow a uniquere
onstru
tion of shape have been re
ently derived in [13℄.Our method 
an be extended to solve a wider 
lass ofproblems, as dis
ussed by Koenderink and Van Doorn in[10℄.There is also a vast body of related literature in thesignal pro
essing 
ommunity, where the problem is knownas \blind de
onvolution" (or more generally \deblurring").The equifo
al assumption is equivalent to assuming ashift-invariant 
onvolution kernel, whi
h is also 
ommonto most of the literature. The interested reader 
an seethe spe
ial issue [1℄ for referen
es.2 An operatorial solutionIn this se
tion we introdu
e the 
ore of our algorithm. Wework in fun
tion spa
e and use the geometry of operatorsbetween Hilbert spa
es. For basi
 results on operators



between �nite and in�nite-dimensional Hilbert spa
es see,for instan
e, [11℄.2.1 NotationIf we 
olle
t a number of images with di�erent 
ontrolparameters ul and organize them into an arrayI := [Iu1 ; : : : ; IuL ℄T , and so for the kernels hul , we 
an getrid of the subs
ript u and write I(x; y) = R h�(x; y)dRfor (x; y) 2 D. The right-hand side 
an be interpreted asthe \virtual image" of a given surfa
e � radiating energywith a given (spatial) distribution R,R(X;Y; Z): R h�(x; y;X; Y; Z)dR(X;Y; Z). For s
enesmade with opaque obje
ts, the integral is restri
ted totheir surfa
e, and therefore it is to be interpreted in theRiemannian sense [3℄. In 
oordinates we write the in-tegral as R h�(x; y; ~x; ~y)r(~x; ~y)d~xd~y for (x; y) 2 D and asuitably 
hosen parameterization (~x; ~y) 2 IR2; we 
all rthe radiant density5. Sin
e the image I is measured onthe pixel grid, the domain D (i.e. a pat
h in the image)is D = [x1; : : : ; xN ℄� [y1; : : : ; yM ℄, so that we haveI(xi; yj) = Z h�(xi; yj ; ~x; ~y)r(~x; ~y)d~xd~y (4)for i = 1 : : :N; j = 1 : : :M: We now want to write theabove equation in a more 
on
ise form. To this end,
onsider the Hilbert spa
e L2(IR2), with inner produ
thh�; �ii : L2 �L2 �! IR de�ned by(f; g) 7! hhf; gii := Z f(x; y)g(x; y)dxdy (5)and norm kfk := phhf; fii. Consider also the spa
eIRLN�M � IRLNM with the inner produ
t h�; �i : IRLN�M�IRLN�M �! IR de�ned by(A;B) 7! hA;Bi := Tra
efABT g: (6)and norm jAj =phA;Ai. If we interpret points in IRLN�Mas LMN -dimensional ve
tors, then the inner produ
t isthe usual ha; bi := aT b. We 
all the integer LMN = K.2.2 Formalization of the problemIf we model6 the radiant density r as a point in L2(IR2),and the image I as a point in IRK , then the imaging5Stri
tly speaking, r is the Radon-Nikodym derivative of R and,as su
h, it is not an ordinary fun
tion but, rather, a distributionof measures. In what follows we will ignore su
h te
hni
alities andassume that we 
an 
ompute integrals and derivatives in the senseof distributions.6By 
hoosing to work on L2 we ex
lude automati
ally all har-moni
 fun
tions. We 
an do so be
ause it has been proven in [13℄that the harmoni
 
omponent of the radian
e does not 
arry shapeinformation, and therefore our 
hoi
e entails no loss of generality.

pro
ess, as understood in (1), 
an be represented by anoperator H H : L2 �! IRK ; r 7! I = Hr: (7)In order to emphasize the dependen
e of H on �, we writeI = H(�)r: (8)This equation is just another way of writing (1). Theoriginal problem 
an therefore be stated, in more 
on
iseform, as �̂; r̂ := arg min�2�;r2L2 jI �H(�)rj2 (9)for a suitable 
ompa
t set �. This notation is not only el-egant but also enlightening, for it will allow us to use thegeometry of operators between Hilbert spa
es to arriveat a prin
ipled solution of the blind de
onvolution prob-lem (3) that minimizes a quadrati
 
ost fun
tion. Beforedoing so, we review some of the de�nitions that we willneed in the sequel.2.3 Adjoints and orthogonal proje
torsThe bounded operator H : L2 ! IRK admits an adjointH� de�ned by the equationhHr; Ii = hhr;H�Iii 8 r 2 L2; I 2 IRK (10)from whi
h we get thatH� : IRK �! L2; I 7! hT (x; y)I: (11)The (Moore-Penrose) pseudo-inverse Hy : IRK �! L2 isde�ned su
h that r = HyI solves the equationH�Hr = H�I (12)when it exists; with an abuse of notation7 we 
ould writeHy = (H�H)�1H�. The orthogonal proje
torH? is thende�ned asH? : IRK �! IRK ; I 7! H?I = (Id �HHy)I (13)where Id is the identity in IRK�K . Note that this is a�nite-dimensional linear operator, represented thereforeby a matrix. The following proposition, whi
h extendsthe results of Golub and Pereyra [9℄, is the key to ourapproa
h to blind de
onvolution:Proposition 1 Let �̂; r̂ be lo
al extrema of the fun
-tional �(�; r) := jI �H(�)rj2 (14)7We have not de�ned the \inverse operator" (�)�1; however, inthe next se
tion we will give an expli
it formula for the pseudo-inverse using the singular value de
omposition.



and, assuming that Hy exists, let ~� be a lo
al extremumof the fun
tion  (�) := jH?(�)I j2: (15)Furthermore, let ~r be obtained from ~� by ~r := �(~�), where� is de�ned as �(�) := Hy(�)I: (16)Then �̂ is also a lo
al extremum of  (�), and ~�; ~r are alsolo
al extrema of �(�; r).Proof: �̂ and r̂ are de�ned by the following 
oupled equations� ���� (�̂; r̂) = 0Dr�(�̂; r̂) = 0 (17)where Dr� stands for the Fr�e
het fun
tional derivative of �with respe
t to r [11℄. On the other hand, ~� and ~r are de�nedby � d d� (~�) = 0~r := �(~�): (18)Computing the derivatives expli
itly, and indi
ating with a\dot" the derivative with respe
t to �, we have that ���� =2((H(�)r)T _H(�)r� IT _H(�)r) = 0, whi
h leads to(H(�)r̂)T _H(�̂)r̂ = IT _H(�̂)r̂ (19)while Dr� = 2(H�(�)H(�)r�H�(�)I) = 0 leads toH�(�̂)H(�̂)r̂ = H�(�̂)I: (20)Now, the last equation is what de�nes the pseudo-inverse Hy(see (12)), and therefore it is satis�ed, by 
onstru
tion, whenr̂ = Hy(�̂)I = �(�̂): (21)This shows that if �̂ is a stationary point of �, its 
orre-sponding r̂ must be of the form �(�̂). The 
omputation ofd d� = 2ITH? _H?(�)I 
an be obtained from H?Hr = 0 8 r,whi
h leads to _H?Hr+H? _Hr = 0, and hen
e to_H?(�) = �H?(�) _H(�)Hy(�): (22)(=) Let us now assume that ITH? _H?(~�)I = 0, and let ~r =�(~�). We want to show that ���� = 0, that is (19) is satis�edwith �̂ = ~� (that (20) is satis�ed follows dire
tly from our
hoi
e of ~r from (21)). To this end, we write8(Hr)T _Hr = IT (HHy +H?) _Hr = IT _Hr (23)where the se
ond term of the right hand side is zero from ourassumption that ITH? _H?(~�)I = 0 and the expression of _Hin (22).=)) Now let (19) and (20) hold for �̂; r̂. We want to showthat ITH? _H?(r̂)I = 0. To this end, we write (19) as9(HHyI)T _Hr = IT _Hr (24)so that, after rearranging terms, we get thatIT (Id�HHy) _HHyI = 0, but substituting the de�nition of _H?,we get that ITH? _H?(�̂)I = 0, whi
h allows us to 
on
ludethat (18) is satis�ed with � = �̂.8In the following we omit the argument ~� in order to simplifythe notation.9For simpli
ity we omit the argument �̂.

Remark 2 The signi�
an
e of the proposition above 
onsistsin the fa
t that, while (14) is an optimization problem onan in�nite-dimensional spa
e, (15) is on a �nite-dimensional(and often small) spa
e. Indeed, for the 
ase of shape fromfo
us/defo
us that we 
onsider, it is a one-dimensional spa
e.Note also that the statement is non-trivial: in fa
t, (15) is ob-tained by multiplying on the left (1) by the singular matrix H?.This 
an add spurious solutions to the problem, as we know bysolving linear systems of equations10. The proposition showsthat, in this spe
i�
 
ase, this does not happen.The 
onditions, however, impose the existen
e of the pseudo-inverse, whi
h is equivalent to assuming r belongs to a �nite-dimensional subspa
e of L2 of dimension less than K.2.4 Invariant kernels and the SVDIn order to solve (15) we must be able to 
ompute H?.This, naturally, depends upon the operator H . A bighelp in the solution 
omes by assuming that H is shift-invariant, so that Hr 
an be represented as a 
onvolu-tion produ
t h � r. In the 
ase of depth from defo
us,this is equivalent to approximating the s
ene (lo
ally) bya planar pat
h parallel to the lens at depth �. In this
ase, solving (15) redu
es to a simple one-dimensionaloptimization problem, that 
an be solved in a variety ofways (Newton-Raphson, gradient des
ent, dis
rete sear
het
.)11. The problem, therefore, boils down to 
omputingH?.In order to do so, we want to express the operator Husing its (in�nite-dimensional) singular value de
omposi-tion. To this end, let f�kg, k = 1; : : : ;1 be a sequen
eof positive s
alars sorted in de
reasing order, fIkg an or-thonormal set in IRK and frkg an orthonormal set in L2.We now look for the parti
ular 
hoi
e of su
h sets thatallows us to express H asH = KXk=1�krkIk: (25)Note that H maps L2 onto IRK as followsr 7! Hr = KXk=1�kIk Z rk(x; y)r(x; y)dxdy: (26)Assuming that the pseudo-inverse exists, it is easy to ver-ify that it is given byHy = KXk=1 ��1k rkITk (27)10For instan
e, the solution of Ax = 0 is fx 2 Null(A)g, whilethe solution to BAx = 0 is fx 2 Null(a)g [ fx j Ax 2 Null(B)g.11The equifo
al assumption is very powerful, but equally danger-ous, as we have pointed out in [13℄. Here we will assume that theequifo
al assumption is satis�ed in a small pat
h of the image. Thiswill allow us to resolve boundaries within a pre
ision equal to thesize of the pat
h.



while the orthogonal proje
tor isH? = Id � KXk=1 IkITk : (28)In order for the pseudo-inverse to exist, we need to assumethat the singular values �k are zero for k greater than aninteger � < K. This is equivalent to assuming that theradian
e belongs to a �nite-dimensional subspa
e of L2,whi
h imposes a lower bound on the dimensionality of thedata to be a
quired (number of blurred images and theirsize).The sequen
es f�kg; frkg and fIkg are found by solv-ing the normal equations:�H�Hrk = �2krkHH�Ik = �2kIk k = 1 : : : � (29)or, making the notation expli
it�R hT (x; y)h(~x; ~y)rk(~x; ~y)d~xd~y = �2krk(x; y)R h(x; y)hT (x; y)Ikdxdy = �2kIk (30)for k = 1 : : :K. The se
ond of the normal equations (30)
an be written asMIk = �2kIk k = 1 : : : � (31)where M is the K-dimensional square symmetri
 matrixR h(x; y)hT (x; y)dxdy. Sin
e this is a (�nite-dimensional)symmetri
 eigenvalue problem, there exists a unique de-
omposition of M of the formM = U�2UT (32)with UTU = Id, �2 = diagf�21 : : : �2�g and U = [I1; : : : ; I�℄.We are now left with the �rst equation in (30) in orderto retrieve rk(x; y). However, instead of solving that di-re
tly, we use the adjoint operator H� to map the basisof IRK onto a basis of a �-dimensional subspa
e of L2 viaH�Ik = �krk . Making the notation expli
it we haverk(x; y) = 1�k hT (x; y)Ik k = 1 : : : �: (33)Remark 3 (Regularization) In the 
omputation of H?,the sum is e�e
tively trun
ated at k = � < K, where the di-mension K depends upon the amount of data a
quired. Asa 
onsequen
e of the properties of the SVD, the solution ob-tained enjoys a number of regularity properties. Note that thesolution is not the one that we would have obtained by �rstwriting r using a trun
ated orthonormal expansion in L2, thenexpanding the kernel h in (1) in series, and then applying the�nite-dimensional version of the orthogonal proje
tion theo-rem.Remark 4 (Dimensions) Just to give the reader an ideaon the dimensions at play, usually the normal equations are

solved lo
ally in a pat
h around ea
h point in the image. Inorder for the invarian
e assumption on the kernel to hold, su
hwindows are usually kept of sizes M �N in the order of 3� 3pixels to 10 � 10 pixels. Typi
ally between L = 2 and L = 4images are a
quired. We 
hoose N = M = 5 and L = 2,thereby having to 
ompute the SVD of matri
es of size 50. Allthese SVDs 
an be pre-
omputed.We now have all the ingredients to write the re
ipe.2.5 Blind de
onvolution algorithm1) Constru
t the matrix12M(�) = Z h�(x; y)h�T (x; y)dxdy:2) Compute its SVD: M(�) = U�2UT . LetH?(�) = Id � UT� U�where U� is the matrix built with the �rst � 
olumnsof U .3) Minimize the norm13 jH?(�)I j with respe
t to thedepth of the pat
h �. Call the minimizer �̂.4) Restore the radian
e14r̂(x; y) = h�̂T (x; y)U ��invwhere ��inv = [��11 ; : : : ; ��1� ℄T .Noti
e that the steps 1)�2) 
an be pre-
omputed o�-linefor any given value of �.Remark 5 (Tradeo�s) There is a tradeo� between mem-ory and 
omputational speed. Choosing a lo
al des
ent algo-rithm in 3), one only needs to store one K�K matrix, but thenneeds to 
ompute H?(�) at ea
h step of the iteration. Optingfor a dis
rete sear
h, instead, one needs to store H?(�i) for anumber of depths �i, but then only the produ
t H?(�i)I needsto be 
omputed at ea
h depth.Following the derivations in the previous se
tion, as a
onsequen
e of proposition 1 and the properties of theSVD, we 
an 
on
lude that12For 
ertain families of kernels, su
h as Gaussian ones, the inte-gral 
an be 
omputed in 
losed-form without therefore any approx-imation.13There are a number of ways in whi
h this 
an be done. Al-though there exists no 
losed-form solution, lo
al gradient meth-ods, tangent methods, Newton methods are all viable possibilities.Another alternative 
onsists in pre-
omputing H?(�) for a numberof �s (however many are ne
essary in order to a
hieve the desiredresolution in depth), and then simply 
ompute jH?(�i)Ij for all i.Choose the i that leads to the smallest norm, 
all �̂ := �i.14If all we are 
on
erned with is the depth �, this step 
an beomitted.



Proposition 2 The algorithm des
ribed in 1){4) 
on-verges to a lo
al extremum of the problem (3) for an in-variant kernel and a quadrati
 
ost fun
tion.Remark 6 (Observability) The 
onditions under whi
hshape 
an be uniquely re
onstru
ted from blurred images de-pend upon the radian
e of the s
ene. As it stands, the algo-rithm des
ribed in se
tion 2.5 seems to return an answer atevery point, regardless for the radian
e. However, in the pres-en
e of radian
es whi
h are not \suÆ
iently ex
iting" (see [13℄for rigorous de�nitions and 
hara
terizations), step 3) of thealgorithm 2.5 will return a 
at pro�le that is independent of�. This is easy to test, and it is possible to asso
iate the lo
al
urvature of the fun
tion �(�) := jH?(�)Ij with a reliabilitymeasure for the lo
alization of depth, as in �gure 6.It would be desirable if su
h 
onditions 
ould be stated di-re
tly in terms of the data I, so as to avoid useless 
omputa-tions at points where depth 
annot be re
overed (for instan
ewhere the radian
e is harmoni
). A thorough analysis of thisaspe
t of the algorithm is still under way.3 ExperimentsIn this se
tion we des
ribe an implementation of the al-gorithm presented in se
tion 2.5 for the 
ase of Gaus-sian kernels. We 
hoose Gaussians not be
ause they area good model of the imaging pro
ess, but be
ause theymake the analysis and the implementation of the algo-rithm straightforward. The algorithm does not dependupon this 
hoi
e, and indeed we are in the pro
ess ofbuilding realisti
 models for the kernels of 
ommer
ial
ameras.3.1 Gaussian kernelsOne of the simplest families of kernels are the Gaussians,whi
h have the property of being invariant with respe
tto 
onvolution. It turns out that this 
hoi
e is often usedin the literature. We re
all that the kernel h is a (
olumn)ve
tor obtained by sta
king the kernels h�ul(xi; yj) on topof ea
h other, so we only need to spe
ify the generi
 ker-nel, whi
h ishul(xi; yj ; x; y) = 1p2��(ul; �)e� 12 (xi�x)2+(yj�y)2�(ul;�)2 (34):= h0(xi � x; yj � y; ul) (35)where the \blur radius" � depends both on the fo
allength of image l, ul, and on the depth of the pat
h be-ing 
onsidered, �. We organize the kernels into a ve
tor,
ompute the matrixM(�) in 
losed form and evaluate ito�-line for 200 values of �. We then 
ompute their SVDand follow the steps of the algorithm 2.5.Remark 7 (User's 
hoi
es) Of 
ourse, real s
enes do notsatisfy the equifo
al assumption if not lo
ally away from dis-
ontinuities. Therefore, we run the algorithm on small pat
hes

around ea
h point on the image, 
ontent with having 
onsis-tent results only away from dis
ontinuities15. Sin
e the 
hoi
eof a family of kernels 
omes from a model of the opti
s of the
amera, the size of the pat
hes is the only 
hoi
e involved inimplementing our algorithm. We 
hoose it to be 5� 5 pixels,as a tradeo� between the validity of the equifo
al assumptionand 
ompensation for noise.Having pre-
omputed H?(�) at 200 values of �, the al-gorithm requires 510KFlops at ea
h point. Sin
e theseoperations are all independent, and therefore highly par-allelizable, there is potential for real-time operation on
ommer
ial hardware.A detailed experimental analysis of the performan
eof the algorithm is best 
arried out on 
arefully 
ontrolledsimulations. However, for the purpose of illustration ofthe fun
tioning of the algorithm on real images, we showthe results on sets of images provided to us by Watan-abe and Nayar (�gures 1 and 6). Although no rigorous

Figure 1: (Top) Two images taken with di�erent fo
allengths, 
ourtesy of Watanabe and Nayar [18℄. The two fo-
al planes are very 
lose so the di�eren
e between near (left)and far (right) is barely visible. (Bottom) Unaltered depthpro�le as estimated by the algorithm. Grays
ale values areproportional to the depth of the s
ene relative to the �rst fo-
al plane. Although we have no rigorous evaluation of theestimation error, the qualitative shape of the s
ene is visible.ground truth is available, the qualitative shape of the15Extending the algorithm to dis
ontinuities is part of our re-sear
h agenda.



s
ene seems to have been 
aptured. In this experiment,the algorithm runs on 2 images, with pat
hes of dimension5�5. These 
onditions are 
hallenging for the algorithm,sin
e it for
es the rank of the orthogonal proje
tor H?to be at most 50. However, the behavior of the algo-

Figure 2: Smoothed mesh of estimated depth for the s
ene in�gure 1. Two images have been used.rithm substantially improves when more than two imagesare available. As shown in �gure 3, the average error in asequen
e of 50 trials de
reases signi�
antly with the num-ber of input images. Furthermore, for a 
onstant number
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Figure 3: Average re
onstru
tion error (in absolute value) asa fun
tion of the number of input images for 50 trials of thesame experiment. Performan
e improves dramati
ally withmore than 2 images.of images, the average re
onstru
tion error is not uni-form a
ross the depth �eld, as shown in �gure 4. Just togive the reader an idea on the pro�le of the residual 
ostfun
tion, whi
h is minimized with respe
t to the depth ofthe pat
h at ea
h step, we report an example in �gure 5,where it 
an be seen that the residual is neither smooth
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Figure 4: Average re
onstru
tion error as a fun
tion of depthfor 50 trials of the same experiment. Three blurred imageshave been used.nor 
onvex. In �gure 6 we show the re
onstru
tion of areal s
ene together with a measure of its reliability.
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Figure 5: Example of residual to be minimized jH?(�)Ij: no-ti
e that it is non-smooth and non-
onvex. The true minimum- indi
ated by a 
ross - and the estimated one - indi
ated by asquare - 
oin
ide. Asterisks indi
ate the fo
al planes of imagedata.4 Con
lusionsWe have proposed a solution to the problem of re
on-stru
ting the shape and radian
e of a s
ene when usinga quadrati
 
ost fun
tion under invariant integral imag-ing models. Rather than approximating the 
ontinuumwith a dis
retization, in our approa
h the size of the mea-surement array naturally imposes regularity in the solu-tion, whi
h is obtained in in�nite-dimensional spa
e us-ing a fun
tional singular value de
omposition. We use thestru
ture of maps between (�nite and in�nite-dimensional)Hilbert spa
es, whi
h makes the analysis simple and in-tuitive. Our solution results in a straightforward and ef-�
ient algorithm that does not involve any tuning, 
hoi
e
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Figure 6: (Top) Two images taken with di�erent fo
allengths, 
ourtesy of Watanabe and Nayar [18℄. The di�er-en
e between the two images is barely visible, sin
e the twofo
al planes are very 
lose. (Center) Re
onstru
ted (relative)unaltered depth pro�le. (Bottom) reliability parameter 
om-puted from the lo
al 
urvature of the residual fun
tion aroundits minimum. As it 
an be seen, the estimates of depth 
or-responding to the uniform region of the ba
kground have ahigh un
ertainty asso
iated to them. Note that at o

ludingboundaries un
ertainty is judged to be low by the algorithm,although the a
tual estimates are unreliable due to the viola-tion of the equifo
al assumption.


