
Which Side of the Focal Plane Are You on?

Anita Sellent∗and Paolo Favaro
Institut für Informatik und Angewandte Mathematik

Universität Bern, Switzerland
sellent@iam.unibe.ch, favaro@iam.unibe.ch

Abstract

Defocus blur is an indicator for the depth structure of a
scene. However, given a single input image from a conven-
tional camera one cannot distinguish between blurred ob-
jects lying in front or behind the focal plane, as they may be
subject to exactly the same amount of blur. In this paper we
address this limitation by exploiting coded apertures. Pre-
vious work in this area focuses on setups where the scene
is placed either entirely in front or entirely behind the focal
plane. We demonstrate that asymmetric apertures result in
unique blurs for all distances from the camera. To exploit
asymmetric apertures we propose an algorithm that can un-
ambiguously estimate scene depth and texture from a single
input image. One of the main advantages of our method is
that, within the same depth range, we can work with less
blurred data than in other methods. The technique is tested
on both synthetic and real images.

1. Introduction
When a 3D object is imaged through a lens, objects at

different distances to the camera are recorded with different
sharpness of detail. The further away an object is placed
from the focal plane of the camera, the blurrier it occurs in
the image. By detecting the size of the out-of-focus blur,
depth can be estimated from a single image [16, 21, 31].
While the blur-size is determined by the distance to the fo-
cal plane, the shape of the out-of-focus blur is determined
by the shape of the aperture. In digital imaging, this shape
usually resembles the eye and pupils of humans, i.e., they
are approximately circular. However, to imitate the pupil
shape of the human eye may not be the most advantageous
choice for single image depth estimation. Indeed, it has
been shown that coded apertures [14, 18, 27] enable more
reliable identification of blur sizes. High frequency aperture
masks preserve a larger portion of high frequency image de-
tails than conventional apertures. These details can be ex-
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Figure 1: Sepia officinalis (Cuttlefish) possesses high visual
acuity eyes with a peculiar W shaped pupil, whose function
has been connected to depth estimation [24].

ploited for depth estimation. Still, defocus blur destroys or
at least attenuates some high frequency image content. The
larger the blur, the more image frequencies are lost, render-
ing depth estimation as well as deblurring more ambiguous
and susceptible to image-noise [25]. Thus depth estimation
based on defocus cues works best when the blur size is rea-
sonably small.

Most previous single image depth estimation approaches
place the entire scene on one side of the focal plane [14, 18].
When symmetric apertures are used, this is necessary to ob-
tain an unambiguous depth estimate, Fig. 2. Objects be-
tween the camera lens and the focal plane produce an im-
age of the lens aperture (a blur) with the same orientation,
Fig. 2, top row. Objects beyond the focal plane produce
an image of the lens aperture that is flipped both vertically
and horizontally, Fig. 2, bottom row. When the aperture
shape is symmetric, the original blur and its flipped version
cannot be distinguished. For scenes with large depth dif-
ferences, unique blurs for symmetric apertures can become
quite large, sacrificing many frequencies from the sharp im-
age. Asymmetric apertures, however, allow to distinguish
between any position in space regardless of where the focal
plane lies. The camera can thus focus in the middle of the
scene so that smaller blur radii are obtained for the same
range of depths. Or, for the same maximal blur radius, we
increase the number of distinguishable blur levels by a fac-
tor of two. Asymmetric pupils have actually also evolved in
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Figure 2: The defocus blur of an object located in front of
(top) or behind (bottom) the focal plane are related by a
horizontal and vertical reflection.

the animal kingdom, e.g., the eyes of cuttlefish, sepia offic-
inalis, have a distinctive asymmetric W shape, Fig. 1.

We propose to exploit asymmetric apertures to estimate
the complete range of depths in space given a single coded
image. To maximize depth discrimination performance, we
seek for the optimal asymmetric aperture mask by adapt-
ing a recent method [25] to dealing with depth levels on
both sides of the focal plane, Sect. 3. For these asymmet-
ric masks we derive an efficient depth estimation algorithm,
Sect. 4. We can thus compare depth estimation on only one
side of the focal plane to depth estimation on both sides of
the focal plane, Sect. 5.

2. Related Work
Introducing masks into the aperture of a conventional

camera, we profit from research that was previously pub-
lished. Levin et al. [14] and Veeraraghavan et al. [27] first
use coded masks in photography to estimate both depth and
focused images. The approaches rely on deblurring to iden-
tify the blur that causes the recorded image. An earlier con-
tribution of Dowski and Cathey [7] and later work by Mar-
tinello and Favaro [17, 18] circumvent the problem of de-
blurring the image at all depth levels for depth estimation.
They use either filters complementary to the aperture mask
[7], a bayesian approach [17] or an efficient filtering ap-
proach [18] to estimate depth from a single coded aperture
image. In particular, the latter shows good performance also
in face recognition [22] and in video applications [19]. Un-
fortunately, it is invariant to the flipping of the mask, Sect. 4.

Usually, a scene consists of several objects at different
depth levels. If for depth estimation deblurring is performed
on the entire image [14, 27], ringing artifacts can propagate
and encourage wrong depth estimates. In setups with multi-
ple images, boundaries for piecewise space variant blur can

be inferred, e.g., via a variational approach [9]. For single
image deblurring, segmentation for large blur differences
can also be inferred via an edge map [2]. Once regions of
constant depth are known, space variant deblurring can be
applied directly [2]. Suitable regularization in this approach
allows to preserve the grey-value level of each segment. In
our approach we obtain a segmentation of the image using a
scale estimation approach [18] and can thus apply piecewise
constant deblurring.

Previous deblurring based approaches to single image
depth estimation use the reconstruction error [14, 27] and
the kurtosis [27] of the image to detect the correct blur scale.
However, in conjunction with our deblurring method we
found that these criteria are not equally well suited to iden-
tify the correct orientation of a blur kernel. Instead, other
reference-free quality metrics can be applied, as they have
recently been introduced to assess the quality of denoised
[30] or deblurred [6, 3] images. In particular the latter two
approaches focus on the detection of ringing artifacts with
a criterion that can be computed sufficiently fast to be eval-
uated repeatedly.

Many of the works using coded defocus blur for depth
estimation also considers which possible mask is optimal
for that purpose. Levin et al. [14] consider the Kullbach-
Leibler divergence between statistical formulations of the
blurring process. The masks with optimal depth discrimi-
nation - obtained by a full-search of all binary masks - all
turn out to be symmetric. We obtained similar symmetric
masks in Ref. [25]. Additionally, our formulation and op-
timization scheme allow to find the masks quickly. Other
approaches [27] to find aperture masks require them to be
broadband in order to destroy as little frequency content as
possible. Zhou and Nayar [29] and Masia et al. [20] fo-
cus on the deblurring capabilities of coded aperture masks
and ignore depth estimation. Similarly to Levin et al., these
latter approaches require a complete search to find the opti-
mal mask. However, the masks they propose turn out to be
asymmetric and can be used in our depth estimation algo-
rithm, see Sect. 5.

Currently, asymmetric point-spread functions are ex-
ploited for depth estimation using multiple input images
[11] or active illumination [10]. Asymmetric masks are also
frequently used in wavefront coding [8], where the point-
spread function is designed to be invariant to depth. In con-
trast, our focus is passive depth estimation from a single in-
put image using only a conventional camera equipped with
a coded aperture.

3. Optimized Masks for Depth Estimation on
both Sides of the Focal Plane

For accurate depth estimation, images at different depths
should be sufficiently different from each other. That is,
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Figure 3: Top row: optimized asymmetric masks on differ-
ent grid-sizes with transmission coefficients in [0, 1]. Bot-
tom row: masks obtained by thresholding the transmission
coefficients to {0, 1}.

for a given texture at a given set of distances from the fo-
cal plane, the blurred versions of that texture should dif-
fer as much as possible from each other. We implemented
this idea into a mask evaluation criterion [25]. The aper-
ture of the camera is divided into an n × n grid of elemen-
tary apertures with transmission coefficients 0 ≤ αi ≤ 1.
Each elementary aperture i contributes a depth-dependently
blurred image gdi . These elementary images sum up to form
the final image on the sensor plane gdα =

∑
i αig

d
i . To

keep the brightness of the final image independent from
the open apertures, the normalization

∑
i αi = 1 is used.

For different blur levels d1 and d2 the difference of the
blurred versions of a texture f is considered, i.e., Df1,2 =
‖gd1α − gd2α ‖22. To obtain a good depth discrimination, this
distance should be maximal.

While depth from defocus approaches use several im-
ages to resolve the ambiguity between texture and blur, sin-
gle image approaches rely on the presence of depth-specific
structures that are unique to each scale. Therefore, in Ref.
[25] a projector P is introduced to eliminate all frequency
content that is common in natural images. So the distance
PDf1,2 = ‖Pgd1α −Pgd2α ‖22 is considered to find optimized
masks for single image depth estimation. This distance is
averaged over a database F of sharp textures and a given set
of depth levels B = {d1, . . . , dk}. Finally, a term is added
that encourages open elementary apertures. Then optimized
aperture masks are obtained by solving the problem

maxα
∑
d1∈B

∑
d2 6=d1

∑
f∈F

PDf1,2 − λ‖α‖22 (1)

s.t.

n2∑
i=1

αi = 1, 0 ≤ αi ≤ 1 ∀i ∈ {1, . . . , n2}

In accordance with previous approaches [14, 27, 18], Ref.
[25] considers only depth levels on one side of the focal
plane. All the resulting aperture masks turn out to be sym-
metric. In our approach we consider depth levels on both
sides of the focal plane. By using a set B̃ of depth lev-

els on both sides of the focal plane, we obtain the asym-
metric masks shown in Fig. 3, top row. In particular we
use the same database F of natural textures, the same pa-
rameter settings and the same strategy to find suitable reg-
ularization parameter as in Ref. [25]. Experiments in this
work also show that the optimized masks perform best in
noise free images. If noise is present in the image, binarized
masks perform better than their continuous valued counter-
parts [25]. For binarization only values larger than 1

n2 are
set to 1; all other values are set to 0. The thresholded ver-
sions of our asymmetric masks are shown in Fig. 3, bottom
row. For all experiments in Sect. 5 we use the thresholded
versions of the masks.

4. Depth Estimation
In our approach we use asymmetric masks to obtain dif-

ferent point-spread functions (PSFs) for objects located in
front and behind the focal plane. Theoretically, we could
deblur the image with a set of known blur kernels, i.e., per-
form the approach suggested by Levin et al. or by Veer-
araghavan et al. [14, 27] with all scales and both possible
orientations of the blur kernel. However, the scale estima-
tion method of Martinello and Favaro [18] does not require
to solve the inverse problem of deblurring for depth estima-
tion. As it is more accurate and much faster than the de-
blurring approaches, we profit from this algorithm to obtain
the scale of the defocus blur. We show that the approach is
invariant to the orientation of the blur kernel even for asym-
metric aperture masks. To determine the orientation of the
blur kernel, we still resort to deblurring. However, with the
known scale and known neighborhood, the two required de-
blurring operations - one for each orientation of the kernel
- can be performed quickly and accurately. By applying
reference-free quality metrics to the deblurred images, we
can learn to distinguish the correct orientation of the blur
kernel.

4.1. Scale Estimation

The depth estimation algorithm in Ref. [18] describes
the coded defocus blur of an m × m image patch g at a
certain depth d as a linear operation on the sharp image f ,

gd = Hdf . (2)

The basic assumption of the algorithm is that all blurred nat-
ural images at depth level d are contained within a subspace.
The projection to the perpendicular space of this subspace,
H⊥d is such that H⊥d gd = 0 and can be obtained in two
ways. Formally,

H⊥d = I −Hd(H
>
d Hd)

−1H>d (3)

where I is the identity matrix and H> indicates the trans-
pose of a matrix H . Eq. (3) can be derived from solving



Eq. (2) via pseudo-inverse. This notation is helpful to show
the invariance of the approach to flipped blur kernels. For
a region of constant depth, the blurring with a flipped ker-
nel can be written as gd̃ = H>d f . Using Eq. (3) we obtain
HdH

⊥
d̃
gd = 0 and thus H⊥

d̃
gd ∈ (H⊥

d̃
∩ H⊥d ). As projec-

tions are idempotent, we can derive from H⊥d H
⊥
d̃
g = H⊥

d̃
g

and Eq. (3) that actually H⊥d = H⊥
d̃

, i.e., the linear sub-
spaces for the kernel and its flipped versions are identical.

In practice, H⊥d can be learned from sample images: For
a set of sharp image patches from a database f ∈ F̃ , im-
ages at all the blur levels are recorded or synthesized. All
experiments in this article use synthetically blurred images
with a calibrated PSF. For each depth level d and texture
f the synthesized images are stacked in a vector hdf and
arranged in a matrix Fd. This matrix is decomposed via
singular value decomposition to Fd = UdSd(Vd)

> . By
thresholding the singular values, Ud = [Pd, Qd] can be di-
vided into two subspaces where Pd corresponds to the large
singular values and spans the subspace of blurred textures
at level d. Qd is perpendicular to the subspace Pd. The
operator H⊥d = Qd(Qd)

> is the projection to the subspace
Qd.

For a given set of blur scales D = {|di|di ∈ B} scale
identification reduces to finding the most perpendicular sub-
space. As a single image may contain objects at different
depths, we consider small m ×m patches to determine the
depth level of each center independently. To obtain smooth
depth maps, we regularize the depth estimation and consider

d = arg min
d∈D
‖H⊥d g‖2 + β|∇d| (4)

with β > 0, which can be solved via graph-cuts [5, 12, 4].
If not indicated otherwise, we use a patch size m = 27,

20 equally spaced blur levels between 1 and 20 pixels, and
β = 0.0005 for normalized images.

4.2. Blur Kernel Orientation Estimation

The algorithm of the previous section allows to estimate
the scale of the blur at each pixel. To determine the sign of
the distance to the focal plane we deblur the image. Deblur-
ring the entire image with the same blur kernel can cause
ringing artifacts from pixels with different scales. We there-
fore consider a region Ad of pixels with the depth scale d.
Within the region we want the deblurred image f̃d and the
input image g to correspond under the blurring operation,
i.e.,Hdf̃ |Ad

= g|Ad
where |Ad

is the restriction toAd. Out-
side the region Ad the image f̃d should continue smoothly.
Thus we construct a weight function

w(x) =

{
1

dist(Ād)
if x ∈ Ad

1 if x 6∈ Ad
(5)

where Ād is the complement of Ad in the image domain.
This weight function is 1 outside ofA and decreases linearly

(a) (b)

(c) (d)

Figure 4: To account for depth variations, we deblur a given
input image (a) with a mask (b) that only considers pixels
with a certain scale. If using the correct orientation of the
kernel for deblurring, we obtain a basically artifact-free im-
age (c). Using the flipped kernel, we obtain an image with
different characteristics (d).

with increasing distance to the boundary of A. So we can
find the deblurred image fd by minimizing the energy

E(fd) = ‖Hdfd|Ad
− g|Ad

‖22 + γw‖∇fd‖22 . (6)

We find an optimum of this functional via conjugate gradi-
ent using forward differences for the image gradient ∇f ≈
Df and thus ∇E = H>d Hdf |Ad

−H>d g|Ad
+ γwD>Df .

As this simple deblurring algorithm does not consider oc-
clusions, it generally requires the sharp image also beyond
the boundaries. We therefore enlarge the region Ad in our
implementation by half the blur kernel size. For all experi-
ments, we use γ = 0.005 and 50 iterations in the conjugate
gradient approach.

Given locally deblurred images for each possible orien-
tation of the blur, f+d and f−d, we want to decide which
orientation is the correct one. For this we consider Gaus-
sian windows around a pixel x, i.e., p+d and p−d with the
same patch size as for scale estimation. As we use only
weak regularization of the image, the reconstruction error
[14, 27] for both setups is approximately the same and un-
suitable for the decision. In our experiments, we found the
following measures to work best:

• As proposed by Veeraraghavan et al. [27] we consider
the kurtosis of a patch p to detect ringing artifacts.
F1(x) =

∑
y∈p(

∇p(y)−∇̄p
σp

)4 where ∇̄p and σp are the
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Figure 5: Deblurring an image with the correctly orientated (dotted) or flipped (solid) blur kernel results in differences in the
considered, reference-free quality metrics. Here the values of each considered metric for 100 sample patches are shown. We
learn the relative weight of each metric via a support vector machine.

mean and the standard deviation of the gradient of the
patch.

• The sharpness index is an image metric formalised by
Blanchet and Moisan [3] to be sensible also to ring-
ing artifacts. It can be computed fast on a local patch
via F2(x) = SI(p) = −log10Φ

(
µ−TV (p)

σ

)
where

TV (p) is the total variation of p, µ = ETV (p) and
σ2 = V ar(TV (p)) its expectation and variance, re-
spectively, and Φ the tail of the Gaussian distribution,
[3].

• When an image is deblurred with a different kernel
than the true blur kernel, more extreme values are re-
quired to compensate for the wrong information [15].
We therefore measure the spread of deblurred patches,
i.e. F3(x) = max(p)−min(p)

• The Laplacian of an image can be used as a reg-
ularization term for image deblurring F4(x) =∑
y∈p |∆p(y)| [13]. We use it as a ringing detector.

• Total variation is used as regularization on the bound-
ary in our deblurring algorithm. Choosing a small
value for γ, however, still allows for the evalua-
tion of total variation as a quality measure F5(x) =∑
y∈p |∇p(y)|.

All these qualities measures are summarized in a feature
vector F+(x) and F−(x) for deblurring with the two orien-
tations of the kernel, Fig. 5. The relative importance of each
feature is then learned via a support vector machine (SVM)
[23]. We train the SVM on images blurred synthetically
with one of the blur kernels and deblur it with both kernels
to learn a vector of weights ν so that ν>(F+ − F−) > 0
for patches blurred with the original kernel.

To propagate the flipping also in regions with low tex-
ture, we regularize the flipping decision

sign(x) = max
s∈{+,−}

sν>(F+−F−) + ζ
∑
y∈Nx

δ(s(x), s(y))

with ζ > 0 and Nx a spatial neighborhood of x. We use
graph cuts to obtain a global solution to this problem, [5].

Note that on the binary decision problem the algorithm is
indeed guaranteed to find the globally optimal solution. In
our experiments, we use 8-connected neighborhoods and, if
not indicated otherwise, ζ = 3.

After both scale and sign have been estimated, an all-
in-focus image that is sharp everywhere can be generated.
As the images already have been deblurred for the flipping
detection, a sharp image can be simply reconstructed by as-
signing to each pixel the value of the image patch deblurred
with the correctly orientated kernel.

5. Experiments
We validate our contributions in several experiments.

First, we perform an evaluation on synthetic images with
known ground truth. Then we show results on real imagery.

5.1. Synthetic Experiments

To evaluate our asymmetric masks and to validate our
approach we first run the algorithm on a stair data set with
20 equally spaced levels, using three different textures, see
Ref. [25]. For each texture we determine the mean squared
blur scale error between the ground truth blur scale lgt and
the estimated blur scale lest on the occlusion-free part of the
image Ω, i.e. e = 1

|Ω|
∑
x∈Ω(lest − lgt)2. We then average

the mean squared error over the three data sets.
As aperture masks block the incoming light to a differ-

ent degree, we evaluate the robustness of the masks against
noise. Gaussian noise of zero mean and given variance σ2

is added to an image, where the largest transmission value
is set to 1. Then the images are normalized to [0, 1]. Thus
images with more open apertures are less noisy than im-
ages with few open apertures. For more accurate evaluation,
we set the regularization parameter of the scale estimation
β = 0 in the synthetic experiments.

First, we generate a reference depth estimation error by
considering a depth volume on only one side of the focal
plane with a blur size between 1 and 22 pixel. The parame-
ters of the algorithm are set to the same range of depth level.
The dashed lines in Fig. 6 show that in this setup the depth
estimation error increases considerably with the noise level.
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Figure 6: For the approach with blur sizes in the range 1-
22 pixels (dashed), symmetric masks (red star [14], cyan
diamonds [25]) have a smaller depth estimation error than
asymmetric masks for the same noise level. Our approach
with blur sizes in the range from −11-+11 pixel (solid) al-
lows for more accurate depth estimation. Our optimized
asymmetric mask (blue squares) is even more accurate than
comparable asymmetric masks [28] (green crosses).

Thereby, the error of asymmetric masks is higher than the
error of the symmetric masks from Levin et al. [14] and Ref.
[25].

Second, we consider a depth volume centered on the fo-
cal plane so that blur sizes have a range between −11 and
−1 pixel and 1 and 11 pixel. Note that a blur size of ±1
pixel corresponds to the original sharp image and the kernel
orientation is indeed undetermined. We find our algorithm
to be considerably more robust to noise than the reference
estimation on one side of the focus plane, Fig. 6. Also,
the optimized mask from Sect. 3 performs slightly better in
depth estimation than the reference mask [29] of the same
resolution that was originally designed for deblurring. Both
masks have comparative performance on the deblurring-
based sign detection, i.e., for the representative noise level
σ = 0.002 the reference masks estimates the sign correctly
for 94% of the pixels ( including the blur sizes of±1 ) while
our optimized masks estimated 93% of the signs correctly.
However, for the scale estimation on the same noise level,
our mask obtains an average mean squared blur level error
of 0.56 while the reference mask has an error of 3.00.

The increased robustness of our algorithm in comparison
to single-sided scale estimation on the same depth volume
becomes obvious in the error-plots for the moderate noise
level σ = 0.002, Fig. 7. While the detection of small blur
sizes is still quite accurate, noise induces the algorithm to
confuse large blur sizes with very small blur sizes. The sign
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Figure 7: For one sided depth estimation with blur sizes
1 − 22 pixels all masks show a breakdown at large blur
levels for the moderate noise level σ = 0.002. The black
dotted line shows the correct blur scale level, the blue line
the average of the estimated blur scale level and the red bar
thrice the standard deviation of the estimate. For depth es-
timation with blur sizes −11-+11 our algorithm can cover
the depth volume more robustly.

detection, however, is sufficiently robust to deal with the
noise. Only for the smallest blur size of ±1 pixel, the al-
gorithm cannot detect the flipping of the blur kernel but can
only give the information that the object is within the depth
of field.

5.2. Real Imagery

We acquire real images by introducing the binarized
mask in Fig. 3b into a Canon EF 50mm f/1.8 II lens [1]
that we attach to a Canon EOS 5D, Mark II camera. We
calibrate the camera by acquiring a single PSF from a cali-
bration dot. All other PSF scales on both sides of the focal



(a) input image (b) blur scale map (c) signed blur map (d) deblurred image

Figure 8: Starting with a single input image, (a) our algorithm first determines the blur scale (b), color coded with [26]. Then
deblurring is used to determine if the PSF is flipped, resulting in a signed depth map, (c). The signed depth map has generally
smaller blur sizes which give a more accurate depth estimation result, Fig. 7 and also give a good deblurring result (d).

plane are generated synthetically from the measured image.
In each of the acquired scenes the focal plane is placed ap-
proximately in the middle of the visible depth volume. The
smaller blur scales in the middle of the scenes are visible
in the depth scale image in column (b). To obtain optimal
results for the sign estimation, we set ζ = 17 for the scene
animals (top row) and ζ = 3 for the scene pinapple (bottom
row). In both scenes the sign detection is able to distin-
guish objects placed in front of the focal plane from objects
behind it. We observe that the sign detection tends to as-
sign the orientation of the foreground to pixels belonging
to the background around occlusion boundaries. As the al-
gorithm does not include an occlusion model, and only the
foreground is visible to the entire aperture, this is the ex-
pected behavior. Also, in the pinapple scene we observe an
occasional sign confusion at the low textured regions close
to the focal plane.

By considering the deblurred images in column (d) and
the closeups in Fig. 9 we observe a good reconstruction of
fine image details and only few ringing artifacts. Especially
in the closeups of the large blur scales, the high quality of
the reconstruction of our algorithm becomes evident. Note
that depth estimation without flipping would have to deal
with twice the amount of blur and thus make the reconstruc-
tion of details much harder.

6. Conclusion
In this work we exploit the ability of asymmetric masks

to distinguish every depth in space, regardless of whether
one is in front of or behind the focal plane. We optimized
asymmetric aperture masks for their depth discrimination
capability. These masks allow to focus coded aperture cam-
eras in the middle of a scene rather than very close to the
camera or at infinity. The most immediate benefit is that the
image captured with a central focus plane is less blurry and
hence retains more texture detail. The overall improvement
in depth estimation and image restoration has been vali-
dated experimentally on both synthetic and real images.
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