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Abstract Blind Deconvolution consists in the estimation
of a sharp image and a blur kernel from an observed blurry
image. Because the blur model admits several solutions it
is necessary to devise an image prior that favors the true
blur kernel and sharp image. Many successful image priors
enforce the sparsity of the sharp image gradients. Ideally
the L0 “norm” is the best choice for promoting sparsity,
but because it is computationally intractable, some meth-
ods have used a logarithmic approximation. In this work we
also study a logarithmic image prior. We show empirically
how well the prior suits the blind deconvolution problem.
Our analysis confirms experimentally the hypothesis that
a prior should not necessarily model natural image sta-
tistics to correctly estimate the blur kernel. Furthermore,
we show that a simple Maximum a Posteriori formulation
is enough to achieve state of the art results. To minimize
such formulation we devise two iterative minimization algo-
rithms that cope with the non-convexity of the logarithmic
prior: one obtained via the primal-dual approach and one via
majorization-minimization.
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1 Introduction

Mobile phones are arguably the most ubiquitous imag-
ing system in use nowadays, and hence have taken on a
fundamental role in capturing our favorite memories. Unfor-
tunately, mobile phone cameras come equipped with a small
aperture that suffers from high noise levels when imag-
ing low-light scenes. To compensate for low-light, exposure
time can be increased. However, longer exposures make the
mobile phone more sensitive to motion (of the camera or of
the scene) and may result in visibly blurry pictures. Hence,
in the past decade, the task of blur removal has become more
and more pressing.

In this work we are interested in removing motion blur
with the help of computational methods and we consider
only a single blurry photograph as input. For this purpose,
we use the following blur model

f = k ∗ u + n (1)

where k depends on the motion of the camera and is called
the blur kernel (or point spread function), u is the sharp (or
uncorrupted) image and n is the sensor noise. In this model
the blur does not change across the image. This assumption
does not hold in real scenes with depth variation and/or with
general camera motions. Given both the blurry image f and
the blur k, the estimation of the sharp image is a (non blind)
deconvolution problem. When instead only the blurry image
f is given, the problem of estimating both the sharp image
and the blur is called blind deconvolution.

Solving blind deconvolution is a challenging task because
it is a non-convex and ill-posed problem that requires the
estimation of both u and k. For this reason it is often tackled
with the use of regularization by means of prior knowledge
on the distribution of sharp images (Babacan et al. 2012;
Cho and Lee 2009; Fergus et al. 2006; Krishnan et al. 2011,
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2013; Levin et al. 2011a; Shan et al. 2008; Wipf and Zhang
2014; Xu and Jia 2010; Xu et al. 2013). Several methods use
also a prior on the blur kernel [(see for instance the recent
works (Keuper et al. 2013; Kenig et al. 2010)]. A thorough
analysis of convergence and further references can be found
in Chaudhuri et al. (2014). In this paper, we consider only
priors on the sharp image and use only the positivity and
normalization constraints on the blur.

A common approach to choosing the image prior is to
look for the one that best matches the statistics of natural
images. This led to the use of Total Variation and its modi-
fications, which brought some impressive results (Chan and
Wong 1998; Shan et al. 2008). However, recent theoretical
results have also shown that such priors are not suitable for
the blind deconvolution problem. These priors prefer a blurry
image rather than a sharp one (Levin et al. 2011b; Perrone
and Favaro 2014).

Recently, Wipf and Zhang (2014) argued that a good
image prior may not need to model realistic natural images.
Indeed, they claim that an image obtained by removing gra-
dients from a sharp image may be sufficient to estimate the
correct blur kernel. Moreover, they show that their gradient
sparsity principle is better than most natural image statistics
in distinguishing a blurry image from a sharp one. Since one
can then retrieve the sharp image given the estimated blur ker-
nel, their conclusion is that an image prior that encourages
strong sparsity in the gradients leads to a better performance
in blind deconvolution.

Based on this principle, a natural choice is the L0 “norm”.
This is the ideal sparsity-promoting prior, but it also leads to
an intractable combinatorial problem. It is therefore common
to use some approximation. The logarithm of the gradient
norm of an image has been the most successful approxima-
tion and has achieved state-of-the-art performance (Babacan
et al. 2012; Wipf and Zhang 2014). Unluckily, these imple-
mentations employ elaborate formulations to deal with the
non-convexity of the logarithmic prior.

In this work we introduce a parametric family of logarith-
mic priors and show that, despite being far from modeling
natural image statistics, it particularly suits blind deconvolu-
tion. We present two simple algorithms that effectively mini-
mize the logarithmic prior and achieve state of the art results.
Finally, we study the prior behavior and show what makes it
successful for blind deconvolution. Themain difference with
theworkofWipf andZhang (2014) is that in thisworkwepro-
pose a more thorough empirical analysis of the logarithmic
prior and the algorithms that we propose have a simpler form.

2 Prior Work

In the past decade, several high-performing blind deconvolu-
tion schemes using Bayesian principles have been proposed

(Babacan et al. 2012; Cho and Lee 2009; Fergus et al. 2006;
Krishnan et al. 2011, 2013; Levin et al. 2011a; Shan et al.
2008;Wipf andZhang2014;Xu and Jia 2010;Xu et al. 2013).
The first step in the Bayesian framework is to devise a sta-
tistical distribution for both the gradients of the sharp image
and the measurement noise or the model error. This joint
distribution is used to pose a maximum a posteriori (MAP)
problem

p(u, k| f ) ∝ p( f |u, k)p(u)p(k), (2)

where p( f |u, k) is a generative model of the noise, p(u) is
a prior of the sharp image and p(k) is a prior of the blur.
Commonly used sharp image priors approximate the heavy-
tail distribution of natural image gradients (Srivastava et al.
2003) via a sparsity-inducing norm of the gradients of u.
The L2 norm of the gradients (isotropic total variation), or
the L1 normof the derivatives (anisotropic total variation) are
classical choices (Chan andWong 1998). In contrast to other
sparsity-inducing norms, total variation (TV) (Rudin et al.
1992) has the desirable property of being convex. However, it
also introduces a loss of contrast in the recovered sharp image
(Perrone and Favaro 2014; Strong and Chan 2003). Other
methods use heuristics to encourage sharp gradients (Cho
and Lee 2009; Xu and Jia 2010; Shan et al. 2008), or some
reweighing strategy of the norm of the gradients (Krishnan
et al. 2011, 2013). The latter methods aim at approximating
the L0 “pseudo-norm” of the gradients, as proposed also in
Xu et al. (2013). In this paper we also encourage sparsity in
the gradients. However, we use the logarithm of TV at each
pixel, which yields a simple energy term while providing
a good approximation to the number of nonzero gradients.
Indeed, this prior has already demonstrated promising results
in blind deconvolution (Babacan et al. 2012;Wipf and Zhang
2013) and denoising (Ochs et al. 2014).

The MAP estimators are usually discredited to be the-
oretically less convenient than the conditional mean (CM)
estimator (Burger and Lucka 2014). In fact, the CM estima-
tor is the Bayes estimator for the mean square error, while
the MAP estimator is only asymptotically the Bayes estima-
tor for the uniform cost function. Nonetheless, in Burger and
Lucka (2014) they show theoretical and experimental results
that rehabilitate the MAP estimator and justify its successful
use in different restoration problems.

For the blinddeconvolutionproblem theMAPformulation
has received further criticisms. In fact, in Levin et al. (2011b)
and Perrone and Favaro (2014) it is shown that a large class of
commonly used image priors favors the blurry image instead
of the sharp one.

Because of such limitation, in Levin et al. (2011a) it is
suggested to marginalize over all possible sharp images u
and thus to solve the reduced problem
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max
k

p(k| f ) = min
k

− log p(k| f )

= min
k

− log
∫

u
p(u, f |k)p(k)du. (3)

In general, the integral in problem (3) is intractable. There-
fore, typically one looks for an approximate solution. A com-
mon approach is tominimize an upper bound of− log p(k| f )
using a variational Bayes strategy (Babacan et al. 2012; Fer-
gus et al. 2006; Levin et al. 2011a; Wipf and Zhang 2013) .
This class of methods has achieved performances compara-
ble to the best methods that directly solve the MAP problem
(2).

Despite the apparent performance of the variational Bayes
strategy,Wipf andZhang (2013) show thatmethods that solve
problem (3) are equivalent to a MAP strategy as in prob-
lem (2). They experimentally show that with an L p norm
with p ≪ 1,MAPapproaches are able to favor the right sharp
solution. They also argue that a variational Bayes approach
should be preferred because it is more robust when mini-
mizing a highly non-convex function. Their conclusions are
however in contrast with several MAP approaches that have
demonstrated effective results in various non-convex prob-
lems (Strekalovskiy and Cremers 2014; Möllenhoff et al.
2014a, b; Ochs et al. 2014). The conclusions given in Wipf
and Zhang (2013) suggest that minimizing a cost functional
as in (2) is not limited per se, as long as one finds a mini-
mization strategy that carefully avoids its local minima.

In this paper, we extend the initial work in Perrone et al.
(2014) where we proposed two MAP strategies to minimize
a functional based on a logarithmic non-convex prior by
proposing an analysis of the logarithmic prior, by studying
the distribution of the parameters and by adding additional
experiments that show the properties the logarithmic prior
and of the two algorithms.

3 A Logarithmic Image Prior

In this sectionwe introduce our image prior. From aBayesian
perspective, natural images can be described as having a
sparse collection of gradients (Srivastava et al. 2003). Hence,
one could employ sparsity-inducing priors of the image gra-
dients. However, another point of view is that blurring is the
average of shifted and scaled replicas of the same image gra-
dients. The likelihood that such replicas combine to cancel
each other is statistically insignificant. Therefore, this aver-
aging is more likely to multiply the number of gradients by
the number of nonzero elements in the blur. Thus, a different
perspective is that, in the context of deblurring, the role of an
image prior is to favor solutions that have as few gradients as
possible regardless of their magnitude. Both points of view
lead to the same principle, i.e., one should choose as prior

Numberofnonzeroelementsof (|∇u|) .= ∥∇u∥0
(4)

where ∥ · ∥0 denotes the L0 “norm” (the Hamming distance
to zero) and ∇u is the 2-D gradient of u. Unfortunately,
optimization with this prior is very challenging and, typi-
cally, smoother alternatives such as L p norms ∥∇u∥p

p, with
0 < p < 1, are used. In this work we also consider a prior
with a similar behavior and simple form.

Let us consider the discrete setting. In the 2D discrete
case, we have images with N × M pixels. The (i, j)-th entry
of the blurry image u will be denoted by ui, j . We consider
four possible first order (discrete) derivatives of u according
to whether forward or backward differences are used:

∇FFu
.=[ui+1, j − ui, j ui, j+1 − ui, j ]T (5)

∇FBu
.=[ui+1, j − ui, j ui, j − ui, j−1]T (6)

∇BFu
.=[ui, j − ui−1, j ui, j+1 − ui, j ]T (7)

∇BBu
.=[ui, j − ui−1, j ui, j − ui, j−1]T . (8)

As image prior we propose using the following logarithmic
prior1

log ∥∇u∥p
2,ϵ

.=
N∑

i=1

M∑

j=1

1
4

∑

D∈D
log ∥∇Dui, j∥p

2,ϵ

= p
2

N ,M∑

i=1, j=1

1
4

∑

D∈D
log ∥∇Dui, j∥22,ϵ, (9)

with p > 0, D = {FF, FB, BF, BB}, and where

∥∇ui, j∥22,ϵ
.= (ui+1, j − ui, j )2 + (ui, j+1 − ui, j )2 + ϵ2

(10)

for ϵ > 0 so that the argument of the logarithm is never 0.
Since the following analysis and discussion can be applied to
each gradient discretization independently, in the remainder
of this work we will use the following simplified notation

log ∥∇u∥p
2,ϵ

.=
N∑

i=1

M∑

j=1

log ∥∇ui, j∥p
2,ϵ

= p
2

N ,M∑

i=1, j=1

log ∥∇ui, j∥22,ϵ . (11)

In Eq. (11) the parameter ϵ leads to a lower bound for
this prior equal to MNp log ϵ. We can formulate our blind

1 Although we choose an L2 norm, any Lq norm could be used. How-
ever, we have found experimentally that for a wide set of values in q
this makes little difference in the final performance.
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deconvolution problemusing the logarithmic prior inEq. (11)
as

u, k = argmin
u,k

λ∥k ∗ u − f ∥22 + log ∥∇u∥p
2,ϵ

s.t. k ! 0, ∥k∥1 = 1. (12)

Notice how the role of ϵ is fundamental. If ϵ = 0 then the
optimal solution will always be u = 0 for any λ.

Remark The following limit shows how the log prior approx-
imates the desired L0 “norm”

lim
ϵ→0

p
2
+ 1

log(1/ϵ2)
log ∥∇u∥p

2,ϵ2 =
p
2

∥∇u∥0. (13)

Now, assume that 0 < ϵ ≤ 1 and we substitute λ in prob-
lem (12) with −λp log ϵ2. Then, in the limit for ϵ → 0 we
are solving

u, k = argmin
u,k

λ∥k ∗ u − f ∥22 + ∥∇u∥0

s.t. k ! 0, ∥k∥1 = 1. (14)

In the following sections we present two different strate-
gies to minimize problem (12), and we study the prior in
Eq. (11) to understand how it relates to other commonly used
priors and why it is a good choice for blind deconvolution.

4 Algorithm

To solve problem (12) we use the alternating minimization
scheme

initialize

k1 = k1
iterate t = 1, . . . , T

ut+1 = argmin
u

λ∥kt ∗ u − f ∥22 + log ∥∇u∥p
2,ϵ

kt+1 = argmin
k

∥k ∗ ut+1 − f ∥22
s.t. k ! 0, ∥k∥1 = 1.

(15)

While the iteration in the blur k entails solving a convex
problem, and we solve it as in Chan and Wong (1998), the
minimization in the update of the sharp image u is non convex
and requiresmore attention. To this purposewe introduce two
solvers: one based on a primal-dual approach and another on
majorization-minimization.

4.1 A Primal-Dual Solver

Recall the deblurring problem (given the blur kt ) in Algo-
rithm (15); here we rewrite it as

u = argmin
u

N ,M∑

i=1, j=1

(
(kt ∗ u)i, j − fi, j

)2 + 1
µ
log ∥∇ui, j∥22,ϵ

(16)

where µ = 2λ/p. By using the primal-dual approach of
Chambolle and Pock (2011) we obtain the following mini-
max problem

u = argmin
u

max
z1,z2

⟨kt ∗ u, z1⟩ − F∗
1 (z1)

+ ⟨∇u, z2⟩ − F∗
2 (z2) (17)

where F∗
1 and F∗

2 are conjugate functions of F1 and F2
respectively, and we have defined

F1(x)
.=

N ,M∑

i=1, j=1

(
xi, j − fi, j

)2
,

F2(ξ)
.= 1
µ

N ,M∑

i=1, j=1

log ∥ξi, j∥22,ϵ . (18)

The conjugate functions can be computed via the Legendre-
Fenchel (LF) transform (Rockafellar 1970) and are convex
by construction. Thus problem (17) is an approximation in
all variables z1, z2 and u of the original problem (16). This
formulation has been also proposed for solving theMumford-
Shah problem (Strekalovskiy and Cremers 2014) and for
solving problems with L p norms (with 0 < p < 1) (Möl-
lenhoff et al. 2014a). Notice that the convex approximation
provided by the primal-dual formulation may not lead to one
of the minima of the original non convex cost.

Our general primal-dual algorithm to solve problem (17)
is

zn+1
1 = proxσ F∗

1
(zn1 + σkt ∗ ūn)

zn+1
2 = proxσ F∗

2
(zn2 + σ∇ūn)

un+1 = un − τ
(
kt− ∗ zn+1

1 + ∇ · zn+1
2

)

ūn+1 = un+1 + θ(un+1 − un)

(19)

where kt− denotes the mirrored blur kernel kt (along both
axes), n is the iteration index, θ ∈ (0, 1] and τσ∥K∥2 < 1,
with τ, σ > 0, where K is the matrix operator implementing
both the blur k and the finite difference operator ∇. Two of
the 4 iterations in the above algorithm are defined based on
the proximity operator. The proximity operator proxσ F∗

1
is

computed via
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proxσ F∗
1
(z) = z − σproxF1/σ (z/σ )

= z − σ argmin
x

1
2

∥∥∥
z
σ

− x
∥∥∥
2

2
+ σ F1(x) (20)

= 1
σ + 1

(z − σ f ) .

The proximity operator proxσ F∗
2
is instead computed via

proxσ F∗
2
(z) = z − σ argmin

x

1
2

∥∥∥
z
σ

− x
∥∥∥
2

2
+ σ F2(x). (21)

In Eq. (21) we use Moreau’s Identity (Rockafellar 1970) to
express the proximity operator of F∗

2 in terms of the proxim-
ity operator of F2. This strategy has been used successfully
also for other priors and problems (Möllenhoff et al. 2014a;
Strekalovskiy and Cremers 2014). While this algorithm was
originally studied for convex problems (Chambolle and Pock
2011), recently convergence has been studied also for non-
convex problems (Möllenhoff et al. 2014b).

Since the minimization problem is separable, let us con-
sider the solution obtained for only one element xi, j and
zi, j of the variables x and z respectively. With an abuse of
notation, instead of the element-wise cumbersome notation
xi, j and zi, j we simply refer to x and z in the next equa-
tions. We use the representation x .= ρw, where ρ ≥ 0 and
∥w∥2 = ∥z∥2/σ . Then, let ξ = z/σ and we have

argmin
x

1
2

∥ξ − x∥22 + σ F2(x)

= argmin
ρ,w

ρ2

2

∥∥∥∥
ξ

ρ
− w

∥∥∥∥
2

2
+ σ

µ
log

(

ρ2 ∥z∥22
σ 2 + ϵ2

)

.

(22)

Notice that the logarithmic term now depends only on ρ.
Hence, we can first solve the minimization problem with
respect tow. By simplifying the least squares termwe obtain

arg min
w,∥w∥= ∥z∥

σ

ρ2

2

∥∥∥∥
ξ

ρ
− w

∥∥∥∥
2

= arg min
w,∥w∥= ∥z∥

σ

∥∥∥∥
ξ

ρ

∥∥∥∥
2

+ ∥w∥2 − 2⟨ξ/ρ, w⟩

= arg min
w,∥w∥= ∥z∥

σ

∥z∥2
σ 2 − 2⟨ξ/ρ, w⟩ (23)

= arg max
w,∥w∥= ∥z∥

σ

⟨ξ, w⟩

which immediately yields w = ∥z∥2
σ∥ξ∥2 ξ = z/σ . By substi-

tuting the expression of w back into Eq. (22) and by using
ξ = z/σ we finally have

Table 1 The proposed primal-dual algorithm

initialize

h1 = h1
iteratet = 1, . . . , T

iteraten = 1, . . . , N0

zn+1
1 = 1

σ+1

(
zn1 + σ (kt ∗ ūn − f )

)

zn+1
2 =

(
1 − H

(
zn2+σ∇ūn

σ , µ, ϵ, σ
))

(zn2 + σ∇ūn)

ũn+1 = ũn − τ
(
kt− ∗ zn+1

1 + ∇ · zn+1
2

)

ūn+1 = ũn+1 + θ(ũn+1 − ũn)

end iteraten

ut+1 = ũN0+1

ht+1 = argmink ∥k ∗ ut+1 − f ∥22
s.t. k ! 0, ∥k∥1 = 1

end iteratet

argmin
x

1
2

∥ξ − x∥2 + σ F2(x)

= ξ · argmin
ρ

1
2

∥∥∥ξ − ρ
z
σ

∥∥∥
2
+ σ

µ
log

(
ρ2 ∥z∥2

σ 2 + ϵ2
)

= ξ · argmin
ρ

µ

2σ
(1 − ρ)2 ∥ξ∥2 + log

(
ρ2∥ξ∥2 + ϵ2

)
.

(24)

We can define H as the solution of the 1D problem

H(ξ, µ, ϵ, σ ) = argmin
ρ

µ

2σ
(ρ − 1)2∥ξ∥22

+ log(ρ2∥ξ∥22 + ϵ2) (25)

and build it into a lookup table.2 The proximity operator
proxσ F∗

2
can then be written as

proxσ F∗
2
(z) =

(
1 − H

( z
σ
, µ, ϵ, σ

))
z. (26)

The final algorithm is summarized in Table 1. A similar
approach was proposed for the minimization of L p norms
with 0 < p < 1 by Möllenhoff et al. (2014a). Notice how
several operations are parallelizable, thus leading to a very
efficient implementation.

4.2 A Majorization–Minimization Approach

As a more accurate alternative to the primal-dual algorithm,
one could use a majorization–minimization (MM) approach
(Hunter and Lange 2004), in a similar manner as proposed
by Candes et al. (2008). In the MM approach one defines an

2 Notice that the 1D problem leads to a third order polynomial equation
for which closed-form solutions are known.
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upper bound functional ψ(u|ut ) given the current estimate
ut at time t . This upper bound must satisfy the following
properties

ψ(u|ut ) ≥
N∑

i=1

M∑

j=1

log ∥∇ui, j∥p
2,ϵ

ψ(ut |ut ) =
N∑

i=1

M∑

j=1

log ∥∇uti, j∥
p
2,ϵ .

(27)

Then, one can apply the following iterative scheme

ut+1 = argmin
u

N ,M∑

i=1, j=1

λ
(
(k ∗ u)i, j − fi, j

)2 + ψ(u|ut )

(28)

and provably reach a local minimum of the original function.
To define the upper bound, we consider using the Tay-
lor expansion of the logarithm around the t-th estimate of
∥∇u∥p

2,ϵ up to the first term

ψ(u|ut ) =
N ,M∑

i=1, j=1

log ∥∇uti, j∥
p
2,ϵ

+
∥∇ui, j∥p

2,ϵ − ∥∇uti, j∥
p
2,ϵ

∥∇uti, j∥
p
2,ϵ

. (29)

The properties (27) hold because of the concavity of the log-
arithm function. Finally, by pluggingψ in Eq. (28) we obtain
the following update

ut+1 = argmin
u

N ,M∑

i=1, j=1

λ
(
(k ∗ u)i, j − fi, j

)2 (30)

+ log ∥∇uti, j∥
p
2,ϵ +

∥∇ui, j∥p
2,ϵ − ∥∇uti, j∥

p
2,ϵ

∥∇uti, j∥
p
2,ϵ

= argmin
u

N ,M∑

i=1, j=1

λ
(
(k ∗ u)i, j − fi, j

)2 +
∥∇ui, j∥p

2,ϵ

∥∇uti, j∥
p
2,ϵ

.

so that themajorization–minimization algorithm can be sum-
marized in Table 2. Notice the similaritywith reweighed least
squares algorithms when p = 2.

5 Analysis of the Logarithmic Prior

From a Bayesian perspective the logarithm prior in Eq. (11)
with p = 2

πϵ is equivalent to the assumption that the mag-
nitude of the gradient of u is independent and identically
distributed according to a Cauchy distribution. In fact, if we
define the prior as

Table 2 The proposed majorization-minimization algorithm

initialize

h1 = h1
iteratet = 1, . . . , T

ut+1 = argminu
∑N ,M

i=1, j=1 λ
(
(kt ∗ u)i, j − fi, j

)2 + ∥∇ui, j ∥p
2

∥∇uti, j ∥
p
2

ht+1 = argmink ∥k ∗ ut+1 − f ∥22
s.t. k ! 0, ∥k∥1 = 1

end iterate t

Fig. 1 Log probability of natural and blurry images compared to
Cauchy and Hyper-Laplacian distributions (Color figure online)

1
πϵ

N ,M∏

i=1, j=1

(
ϵ2

∥∇ui, j∥22 + ϵ2

)

, (31)

the minimization in Eq. (12) is equivalent to a maximum
a posteriori (MAP) estimation in which Eq. (31) is used as
image prior. The Cauchy distribution does not fit particu-
larly well natural image statistics, as we show in Fig. 1. Why
should it be a good choice for blind deconvolution?

5.1 Image Statistics or Blur “Reconstructability”?

Following the arguments made in Wipf and Zhang (2014)
we argue that in blind deconvolution an image prior does not
have to necessarily model natural image statistics. Rather, it
could model another family of images as long as it allows
the estimation of the correct blur kernel k. In support to this
thesis we show that blur estimation is sufficiently accurate
for a wide range of “unnatural” images, and hence we can
use them in practice. Our analysis focuses on the image fam-
ily modeled by the logarithmic prior, but similar results are
obtained by using Total Variation, which is another typical

123



Int J Comput Vis

cartooning prior successfully used in blind/nonblind decon-
volution.

To substantiate this claim, we perform an empirical eval-
uation of the logarithmic prior. The family of “unnatural”
images is generated by solving the denoising problem

uλ = argmin
x

λ

2
∥x − u∥22 + log ∥∇x∥p

2,ϵ, (32)

where u is a ground truth sharp image and the image uλ is
its approximation via the logarithmic prior (for a given λ).
We consider several degrees of regularization by varying λ.
As sharp images we use the dataset introduced in Sun et al.
(2013) composed by 80 images.

After computing the image uλ, which is essentially a “car-
tooned” version of the original image u, we estimate the blur
kλ by solving the problem

min
k

∥k ∗ uλ − f ∥22
s.t. k ! 0, ∥k∥1 = 1 (33)

where the blurry image f is generated by convolving one of
the 8 different blurs in Sun et al. (2013) with the ground truth
data u. Thus, the model k ∗ uλ, λ < ∞, can never match
f exactly. Because of the dependency on λ we denote the
optimal blur kλ. Finally, to evaluate the accuracy of the esti-
mated blur, we compute the error between kλ and the ground
truth blur k by using the L2 norm of their difference. When
λ is very high, the cartooning disappears and uλ approaches
u. In this case the recovered blur kλ also approaches the true
blur k. It is more interesting to observe kλ when λ becomes
small, as this corresponds to working with a family of less
“natural” images uλ.

In Fig. 2 we show the average blur error for different
values of λ. When λ is decreased uλ becomes more “car-
tooned”, until, at λ = 0.1, it becomes almost constant (see
Fig. 5). This translates in an increasing error for the blur kλ

as λ becomes smaller. In the second column of Fig. 4 one
can see how even a cartooned version of the sharp image
can yield a blur with a relatively small error compared to
the ground truth blur. The other columns in Figs. 4 and 5
show how images that look different still yield similar blur
estimations.

As typically done in the literature we also perform a final
non-blind deconvolution step using the estimated blurs. This
experiment allows establishing a connection between the
error in the blur reconstruction and the error in the final sharp
image. For this evaluation we use the SSD ratio proposed in
Levin et al. (2011b). The ratio can be computed by

r =
∑N ,M

i=1, j=1(u
kλ
i, j − ugi, j )

2

∑N ,M
i=1, j=1(u

kg
i, j − ugi, j )

2
(34)

Fig. 2 Plot of the average error ∥kλ − k∥22 obtained over the dataset
from Sun et al. (2013) for different values of λ. The blue region denotes
the area around the average bounded by one standard deviation (Color
figure online)

where ug is the ground truth sharp image, ukg is the image
obtained by solving a non-blind deconvolution problem with
the ground truth blur, and ukλ is the image obtained by solv-
ing a non-blind deconvolution problemwith the blur kλ. This
metric is commonly used to evaluate blind deconvolution
algorithms, because it takes into account the intrinsic diffi-
culty of each blur. In our experiment we evaluate the blurs
estimated with images obtained with different values of λ

using the non-blind deconvolution proposed in Zoran and
Weiss (2011).

In Fig. 3 we show the percentage of images with r ≤ 5
for each value of λ. We choose to consider error ratios
smaller than 5 because it has been shown that reconstructed
images with such error are still visually pleasant (Michaeli
and Irani 2014). Notice that for values of λ > 60, 100%
of the images have error ratio smaller than 5 (Fig. 4). This
range includes also values for which a cartooned version of
the sharp image is generated. Indeed, from Fig. 5 one can
see that uλ is evidently cartooned for ∥kλ − k∥ ≤ 0.01.
In Fig. 2 such blur error corresponds to λ < 200, which
largely overlaps with the range λ > 60 obtained from
Fig. 3.

The previous set of experiments shows that a large set
of reconstructed images allows the correct estimation of the
PSF. It also shows how this set includes the ground truth
image and images where details (which do not affect the
blur reconstruction) are removed. In conclusion, our experi-
ments demonstrate that it is limiting to look only for images
that resemble as much as possible the sharp ground truth.
Finally, we show how the logarithmic prior is able to gener-
ate different images that allow a correct reconstruction of the
blur.
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Fig. 3 Percentage of images with error ratio smaller or equal than 5
for different values of λ

Result of
eq. (33) with

λ = 0.1.

Result of
eq. (33) such

that
∥kλ − k∥2 ≤

0.01.

Result of
eq. (33) with

λ = 1000.

Ground truth
kernel.

Fig. 4 Example of kernels obtained by solving Eq. (33) using different
uλ

5.2 Favoring Cartooned Images

Another fundamental aspect of the image prior is whether it
favors the blurry input or some “cartooned” version of the
true sharp image. To understand how the logarithmic prior
behaves, we compare it with the total variation (TV) prior
and the Hyper-Laplacian prior. We consider the difference
d(λ) = ψ( f )−ψ(ũλ). If d(λ) is positive the prior favors uλ

over f . If it is negative, the prior favors f instead of uλ. In
Fig. 6 we show the average value of d(λ) computed on the
dataset in Sun et al. (2013) for the three priors and different
values of λ.

Result of
eq. (32) with

λ = 0.1.

Result of
eq. (32) such

that
∥kλ − k∥2 ≤

0.01.

Result of
eq. (32) with

λ = 1000.

Ground truth
image.

Fig. 5 Enlarged regions of images obtained by solving Eq. (32) and
corresponding to the kernels in Fig. 4

Fig. 6 Difference between the prior computed on the image uλ and the
blurry image f (Color figure online)

Since each prior has a different sensitivity to the parameter
λ we normalize the plot such that each curve intersects the
zero (in d) at the same point.

A first interesting result is that all three priors have a range
for which the image ũ is favored. This aspect was highlighted
also in Wipf and Zhang (2014). However, the magnitude
of d(λ) also matters. The more negative d(λ) is, the more
the prior discriminates between the sharp explanation and
the blurry one. From this perspective, the logarithmic prior
seems to have a stronger preference towards the sharp image
compared to the other priors.
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6 The Role of ϵ

In this section we study the behavior of the logarithmic prior
introduced in Eq. (11) according to the choice of the para-
meter ϵ.

One relevant aspect to consider is how to avoid the degen-
erate constant solution. In this case we can compare two
cases: one when u = constant and one when u = f and
k = δ. The idea is to make sure that the cost function favors
the no-blur solution over the constant one. We can therefore
plug in the two cases in the cost of problem (12) and obtain
the following inequality

log ∥∇ f ∥p
2,ϵ2 < λ∥ f̄ − f ∥22 +

p
2
MN log ϵ2 (35)

or, alternatively,

log
∥∥∥∥
1
ϵ2

∇ f
∥∥∥∥
p

2,1
< λ∥ f̄ − f ∥22, (36)

where f̄ is the average value of f . Then, we use Jensen’s
inequality and the fact that the logarithm is a concave function
to obtain an upper bound of the left hand side of Eq. (36)

p/2
N ,M∑

i=1, j=1

log

[∥∥∥∥
1
ϵ
∇ fi, j

∥∥∥∥
2

2,1

]

≤ pMN
2

log

⎡

⎣ 1
MN

N ,M∑

i=1, j=1

∥∥∥∥
1
ϵ
∇ fi, j

∥∥∥∥
2

2,1

⎤

⎦ . (37)

Then, if we choose ϵ such that

ϵ >

√√√√
1

MN

∑N ,M
i=1, j=1

∥∥∇ fi, j
∥∥2
2

e
2λ

pMN ∥ f− f̄ ∥22 − 1
(38)

the degenerate constant solutionwill be avoided. Also, notice
that 2λ

pMN ∥ f − f̄ ∥22 > 0 and 1
MN

∑N ,M
i=1, j=1

∥∥∇ fi, j
∥∥2
2 > 0

unless f is constant (in this case u constant is a plausible
solution and it should not be avoided). This means that an ϵ

that satisfies Eq. (38) always exists.
To understand more in detail how the choice of ϵ changes

the behavior of the logarithmic prior we performed some
empirical evaluation on the blind and non-blind problems.
In this case we extracted patches of size 201 × 201 from
the dataset proposed in Sun et al. (2013) and we syntheti-
cally blurred them with blurs of size 11×11. We then solved
the non-blind deconvolution problem (using the ground truth
blur) and the blind deconvolution problemwith different val-
ues of λ and ϵ. We finally computed the Sum of Squared
Differences (SSD) error between the reconstructed images

Fig. 7 SSD reconstruction error for the non-blind deconvolution prob-
lem with different values of λ and ϵ (Color figure online)

Fig. 8 SSD reconstruction error for the blind deconvolution prob-
lem (12) with different values of λ and ϵ (Color figure online)

Fig. 9 Cumulative histogram of SSD ratio results on the dataset (Levin
et al. 2011b) (Color figure online)

and the ground truth sharp image. In Fig. 7 we show a visu-
alization of the SSD error for the non-blind deconvolution
problem. The blue color denotes smaller errors while the
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Fig. 10 Cumulative histogram of SSD results per image of the dataset
(Levin et al. 2011b) (Color figure online)

Fig. 11 Cumulative histogram of SSD ratio results on the dataset (Sun
et al. 2013) (Color figure online)

Fig. 12 Cumulative histogram of SSD kernel error on the dataset
(Levin et al. 2011b) (Color figure online)

Fig. 13 Cumulative histogram of SSD kernel error on the dataset (Sun
et al. 2013) (Color figure online)

Fig. 14 Average cost per iteration for the Log-TV MM and Log-TV
PD algorithms (Color figure online)

yellow color denotes larger errors. A small value of λ gives
large errors because it removes details of the image, while a
large value slightly increases the error because it is not able
to remove the noise in the image. In the region surrounding
the best value of λ, the value of ϵ appears to be less relevant.
Nonetheless, large values of ϵ increase the error.

In Fig. 8 we show a visualization of the SSD error for
the blind deconvolution problem. In this case the estimation
seems more sensitive to the values of λ and ϵ and the set of
values that gives the best errors is narrower.

7 Experiments

We evaluate the proposed algorithms on the datasets pro-
posed in Levin et al. (2011b) and Sun et al. (2013). The first
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blurry input ground truth Log-TV MM Log-TV PD (Wipf and Zhang 2013)

(Sun et al 2013) (Babacan et al 2012) (Perrone and Favaro
2014)

(Levin et al 2011a) (Cho and Lee 2009)

blurry input ground truth Log-TV MM Log-TV PD (Wipf and Zhang 2013)

(Sun et al 2013) (Babacan et al 2012) (Perrone and Favaro
2014)

(Levin et al 2011a) (Cho and Lee 2009)

Fig. 15 Examples of deblurred images from dataset in Levin et al. (2011b)

dataset is made of 4 images of size 255× 255 pixels blurred
with 8 different blurs, and it is provided with ground truth
sharp images and blurs.We use the metric defined in Eq. (34)
as a performancemeasure as done also inLevin et al. (2011b).

For each method the same parameters are used for all the
32 blurry images of the dataset. For all the tests we used the
non-blind deconvolution algorithm from Levin et al. (2007),
where for each method we carefully selected the regulariza-
tion parameter in order to have the best SSD ratio.

In Fig. 9 we show the cumulative histogram of the SSD
ratios for several methods in the literatures and for our pro-
posed algorithms (Log-TV MM and Log-TV PD). The MM
algorithm achieves an error ratio equal to 1 for more than
50% of the images, clearly outperforming the methods from

Wipf and Zhang (2013) and Babacan et al. (2012), and,
for most error ratios, the method of Sun et al. (2013). Our
primal-dual method is on par with high performing varia-
tional Bayesian algorithms such as the one from Levin et al.
(2011a). In Fig. 10 we also show the cumulative histogram
of the SSD errors, while in Fig. 15 we show some of the
sharp images obtained on this dataset.3 In Fig. 12 we show
the SSD errors of the blur kernels compared with the ground
truth kernels. The Log-TV MM algorithm achieves a very
good blur reconstruction.

3 A list of all the experiments is available at www.cvg.unibe.ch/
dperrone/logtv/.
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blurry input Log-TV MM
SSD ratio: 10.5276

blurry input Log-TV PD
SSDs ratio: 81.7503

blurry input (Michaeli and Irani 2014)
SSD ratio: 9.1797

blurry input (Sun et al 2013)
SSDs ratio: 36.0126

blurry input (Xu and Jia 2010)
SSD ratio: 75.5378

blurry input (Levin et al 2011a)
SSDs ratio: 44.5062

Fig. 16 Deblurred Images with worst SSD ratio from dataset in Sun et al. (2013)

For our methods we used the same regularization para-
meter λ = 30,000, ϵ = 0.001, p = 1 and 3500 iterations
for each pyramid level. For the primal-dual algorithm we set
N0 = 1, τ = 0.005 and σ = 1

32τ . The parameter values
have been found experimentally. We used a pyramid scheme
where the input image and the blur are down sampled at each
level by

√
2, and the parameter λ is divided by the number

2.1. The number of levels of the pyramid is computed such
that at the top level the blur kernel has a support of 3 pixels.
For the other methods we used the estimates provided by the
authors, or we ran their algorithm using the tuning that gives
the best results.

In Fig. 11 we show an evaluation on the dataset from Sun
et al. (2013). In this case we have 80 images of average size
1024 × 768 synthetically blurred with the blurs from Levin
et al. (2009). The evaluation is made in a similar manner as in
Fig. 9, but using the non-blind deconvolution from Zoran and
Weiss (2011) as proposed in Sun et al. (2013). Michaeli and
Irani (2014) have highlighted that images in this dataset with
an error ratio smaller than 5 are visually pleasant (Fig. 12).
Also in this case the MM algorithm outperforms the other
methods except for the error ratio smaller than 2, where the
algorithm in Sun et al. (2013) performs slightly better. The

primal-dual method performs on par with the algorithm pro-
posed in Michaeli and Irani (2014) until error ratio smaller
than 3.5, but then has a drop in performance. This suggests
a larger instability of the algorithm for more difficult blurs.
For this dataset we set the parameters to λ = 12,500 and
ϵ = 0.0005 for both algorithm. In Fig. 16 we show the
images that have the worst error ratio in the dataset from Sun
et al. (2013). In Fig. 13 we show the SSD errors of the blur
kernels compared with the ground truth kernels. In this case
the Log-TV MM algorithm is still a top performer, but not
a clear winner like for the other experiments. Nonetheless,
the reconstructed blur leads to a better reconstruction than
with the other methods. This means that the metric used to
assess the blur reconstruction (the Euclidean norm) can only
roughly be used to predict the image reconstruction accuracy.

We also measured the performance of the two algorithms
on a MacBook Pro with a 2.6 GHz Intel Core i7 processor
and 16 GB of RAM with bandwith of 1600 MHz. We con-
sider the average time required to process an image of size
1024×800 for four different cases: aMATLAB unoptimized
implementation of theMMalgorithm (MatMM); aMATLAB
unoptimized implementation of the PD algorithm (MatPD);
a MATLAB implementation of the MM algorithm where the
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prior gradient is computed by a C routine (MatCMM); a
MATLAB implementation of the PD algorithm where the
time of the proximity operators is computed by considering
an ideal parallelization where the computation time of the
parallelizable components is divided by the number of pixels
(MatPPD). In our experiments the MatMM implementation
took on average 194.56 min, the MatPD implementation
46.90 min, the MatCMM 46.13 min and the MatPPD would
take, in the ideal case, 37.41 min.

To understand the difference in convergence of the
MatMM andMatPD algorithms, we show the cost functional
(12) at each iteration in Fig. 14. As the cost evolution changes
depending on the image and blur, we compute and average of
all costs on the dataset of Levin et al. (2011b). Also, because
both algorithms use a pyramid scheme, we show the cost
evolution of only the last level and we use the same initial-
ization. We use a logarithmic scale for both axes so that two
facts are emphasized: (1) The MatPD lowers the cost more
quickly than the MatMM algorithm; (2) The MatMM algo-
rithm achieves a smaller cost. Notice that the logarithmic
prior in the cost functional can make the cost negative; thus,
we add a constant before converting the cost to the logarith-
mic scale (Figs. 15, 16).

From our experiments it can been concluded that the
primal-dual method can result in a faster implementation, but
at the cost of being too coarse (due to the convex approxima-
tion of the logarithmic prior) to achieve the same accuracy
of the MM algorithm.

8 Conclusions

In this paper we presented solutions to blind deconvolu-
tion based on a logarithmic image prior. The chosen prior
is as effective as L p norms with p < 1 on the image gradi-
ents, while at the same time leading to simple optimization
schemes despite its non convexity.We show empirical exper-
iments that support the choice of a logarithmic prior for blind
deconvolution. To solve blind deconvolution with this image
prior we propose a computationally efficient scheme via a
primal-dual approach and a high-accuracy scheme via the
majorization-minimization approach. Both approaches per-
form well and converge very robustly.
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