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Abstract

Superresolution from plenoptic cameras or camera arrays
is usually treated similarly to superresolution from video
streams. However, the transformation between the low-
resolution views can be determined precisely from cam-
era geometry and parallax. Furthermore, as each low-
resolution image originates from a unique physical camera,
its sampling properties can also be unique. We exploit this
option with a custom design of either the optics or the sen-
sor pixels. This design makes sure that the sampling matrix
of the complete system is always well-formed, enabling ro-
bust and high-resolution image reconstruction. We show
that simply changing the pixel aspect ratio from square to
anamorphic is sufficient to achieve that goal, as long as
each camera has a unique aspect ratio. We support this
claim with theoretical analysis and image reconstruction of
real images. We derive the optimal aspect ratios for sets of 2
or 4 cameras. Finally, we verify our solution with a camera
system using an anamorphic lens.

1. Introduction

In multi-view camera systems, which record the same
subject from several viewpoints, multiple images of a scene
are assembled into novel views. Multi-view systems include
plenoptic cameras, camera arrays or microscopic multi-
aperture systems. Depending on the architecture, the source
images are either recorded by single microlenses, cam-
eras or optical channels. For simplicity, we use the term
‘cameras’ in this paper.

To improve the resolution of the computed views, su-
perresolution (SR) methods such as reconstruction-based
algorithms are often used. This is usually done as an af-
terthought, working on images from an existing camera sys-
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Figure 1. A prerequisite of superresolution is that a second mea-
surement provides additional information over the first measure-
ment. This is the case in A, where a pixel P» 1 of camera 2 samples
an area distinct from any pixels of camera 1 (like P;,1 and P 2).
It can resolve the red diagonal line that camera 1 missed (B). How-
ever, with multi-view systems, the shift depends on parallax. For
another distance, P> 1 does not provide useful additional informa-
tion (C). We propose to change the sampling area to non-square,
or anamorphic (D, a # b). Regardless of shift, sampling 2 now
always provides additional information over sampling 1 (E). This
also the case for all other pixels of camera 2 (F). There is a direct
effect on the numerical stability of the superresolution problem
(see Figure 5).

tem. Multi-view systems, however, have unique challenges
and possibilities.

On one hand, the relation between cameras cannot be
controlled completely: it is subject to parallax, which de-
pends on the distance from objects in the scene to the cam-
eras. For certain distances, some cameras may sample the
scene at the same points in space, not adding any new spa-



tial information. Therefore, superresolution is ineffective at
these distances.

On the other hand, performance can be improved by de-
signing the camera system with superresolution in mind. In
contrast to the traditional SR setup, where one camera su-
cessively captures multiple frames, each camera can now be
tuned individually. As we will show, specifically the paral-
lax problem can be adressed in this way.

Our proposed solution is to provide each camera with a
unique pixel shape (Figure 1). We show that rectangular,
non-square — or anamorphic — pixels with unique aspect ra-
tios provide the necessary distinction between cameras. In
contrast to more exotic pixel shapes, anamorphic pixels are
easier to design and lay out on an image sensor. In fact,
anamorphic pixels have already been used in commercial
products in the past.

The effect of anamorphic pixels is two-fold: First, each
camera now has a unique sampling frequency in X and Y,
reducing the chance that two cameras will sample objects at
exactly the same points. Even when they do, the unique
pixel shape ensures that the information captured is still
slightly different.

The same effect can also be achieved optically: Instead
of modifying the image sensor itself, anamorphic lenses can
be used. We discuss this option further in Section 8.

We first review previous work in Section 2. Then, we
explain the challenges to SR caused by parallax (Section 3).
In Section 4, the camera model is defined, along with the
system sampling. We then show that the sampling matrix
is better-formed for anamorphic pixels (Section 5). We also
derive the optimal aspect ratios for systems of 2 and 4 cam-
eras. Next, we describe our reconstruction algorithm in Sec-
tion 6. Then, we simulate systems with square and anamor-
phic pixels and reconstruct images (Section 7). Finally, we
experimentally verify our method with an anamorphic lens
(Section 8).

2. Related Work

This work is an application of superresolution techniques
to camera arrays. Superresolution techniques, where multi-
ple low-resolution images (LRI) are combined to compute
a high-resolution image (HRI), have a long history in com-
puter vision; a comprehensive overview was provided by
Park [14].

Before reconstruction, the LRIs have to be registered.
Registration is an important and challenging process in it-
self. Often, no information about the relative positioning of
the LRIs is known. Then, this part of the camera model has
to be estimated along with the high-resolution image [10].
Good estimates of the relative transformations are crucial
to high-quality reconstruction [11]. Sub-pixel precision is
necessary for superresolution to be effective. In our case,

the geometric relations between the cameras can be mea-
sured and fixed before image acquisition and reconstruc-
tion. A remaining parameter in the camera transformation,
however, is parallax shift, which is different depending on
object distance. During HRI reconstruction, parallax shift
has to be estimated for all parts of the image. In this work,
we limit our considerations to flat scenes with a known dis-
tance. However, Bishop and Favaro describe a technique
where initial estimates of parallax and HRI are refined in
an alternating fashion [3], which is also applicable to non-
square pixels.

Our results are relevant to a multitude of multi-view
camera systems. These include plenoptic cameras with
macroscopic relay lenses and microlens arrays, first de-
scribed by Adelson and Wang [1] and in practical form by
Ng [13]. It also applies to microscopic cameras that have
optical channels with overlapping fields of view (FOV).
This includes Lippman’s original integral camera [12] and
TOMBO [18], where each channel has the same FOV,
but also architectures with fanned-out FOVs, such as the
eCLEY [4]. Itis in principle also applicable to macroscopic
camera arrays such as the Stanford large camera array [20].
Our assumption that camera geometry is known does not
apply in this case, however, and therefore it has to be es-
tablished first [19]. Our considerations require a recording
system with at least two physically distinct cameras or opti-
cal channels; they are therefore not relevant to video-based
SR methods.

Non-square pixels have been routinely used in the cam-
era industry. These pixels were part of some early HD
broadcast cameras. Here, they were used because of band-
width restrictions and for standards compatibility. Fujifilm
has also produced several variants of image sensors with
mixtures of hexagonal and square pixels of different sizes.
These pixels have different sensitivity, increasing dynamic
range.

More complex pixel shapes have been proposed by Ben-
Ezra et al. [2]. They also identify pixel overlap as a main
limitation to SR effectiveness. As a remedy, they propose
an irregular Penrose tiling, which eliminates any chance of
overlap. The rhombic pixel shape, however, poses a signif-
icant hurdle for implementation, as new pixel designs are
expensive and image sensor companies prefer to iteratively
tune pixels from existing designs.

Sasao et al. [16] achieve random pixel shapes by spray-
ing an image sensor with toner particles. Schoberl ez al. [17]
use a deterministic, pseudo-random mask for the same end.
Both methods reduce the active area of all pixels, however,
and therefore reduce the light sensitivity of the system. This
is not the case for our method, as fill factor and pixel area
are unaffected.
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Figure 2. Through the lens with focal length f, pixel P ; inte-
grates light from the gray cone. On the object plane at distance d,
it integrates over line wy ;.

3. Parallax and sampling in multi-view systems

In video superresolution, the set of LRIs is comprised of
subsequent frames from a video sequence. The relation be-
tween these frames is given by the movement of the camera
between frames (and in general, also by object movement),
which can be very complex and is generally unknown.

In multi-view superresolution, the relation between LRIs
is given by the geometric relation between the cameras. In
principle, each camera can be different, having a unique
field of view, geometric distortion and viewing direction.
These parameters can be established prior to recording, ei-
ther from design data or from calibration [19] [7]. However,
even if all cameras are identical, they are necessarily located
at different places in space. We assume that they are situ-
ated on a plane perpendicular to their viewing direction.

To see how the cameras sample object space, let us first
look at a single camera in a one-dimensional view (Fig-
ure 2). The camera has focal length f, pixel pitch Ap and
a fill factor of 1. From the intercept theorem, we see that
pixel P ; of this camera 1 integrates over w; on an object
at distance d:

d
f

With fixed focal length, w; increases proportionally with
distance.

Adding a second camera at offset Ax (Figure 3), we see
that the integration area of pixel P ; of camera 2 is always
offset by Ax, independent of distance. However, the rel-

Ap. (1)

w; =

ative shift s = %, measured in pixel integration widths,
is
Az f
= — =, 2
s Ap d 2

Let us now assume that the scene lies on a plane parallel
to the camera plane. Then, this relative offset is the same for
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Figure 3. Camera 2 is shifted by Ax in relation to camera 1. The
sampling areas of the pixels are shifted as well. At distance d, sam-
pling width wa 1 of pixel P> ; has a large overlap with sampling
width w11 of pixel Py 1. This overlap decreases for a shorter dis-
tance d’. However, the overlap with wj o of pixel P ; increases.
At an even shorter distance d”, pixel 1 of camera 2 samples exactly
the same area as pixel 2 of camera 1.

all pixels. Therefore, parallax causes a shift of the complete
camera 2 sampling grid in relation to camera 1. This shift
is inversely proportional to d and also proportional to the
displacement of the cameras Ax.

Further, recall that s is measured in pixel widths. There-
fore, whenever s has integer value, the integration area of
P, 1 in camera 2 is identical to that of another pixel P o
in camera 1. In other words, the sampling grids of cam-
era | and 2 align exactly. Figure 1 shows this phenomenon
for a two-dimensional sampling grid'. Camera 2 now con-
tributes a second measurement over the same integration ar-
eas. This second measurement can be used to reduce noise
(by v/2), but it adds no spatial information. Reconstruction
from LRI 1 and LRI 2 is equivalent to averaging the LRIs
and deblurring. Note that even for integer s, the value of s
still has to be recovered prior to reconstruction.

For distances with a fractional s, however, LRI 2 does
add information, and the reconstruction will be both more
robust and of higher quality. For a given camera system,
the SR reconstruction quality — or sharpness — therefore de-
pends on object distance. As a real scene consists of objects
at different depths, some regions of the HRI are easier to
reconstruct; others are bound to be less sharp. This is true
even with perfect knowledge of scene geometry.

All multi-view systems that employ SR show this prob-
lem. It has been explicitly pointed out for the case of
plenoptic cameras [3] [6]. For microscopic camera arrays,
only the case of s = 0 has been noted, i.e. the case where
object distance is much larger than channel separation, re-
sulting in disappearing parallax shift [9].

IThere is no parallax in Y, because the cameras themselves are placed
at the same Y position.



photoiite 1

S1,1(S12(513(S14 |51 1.0\1.0/6.3(0.0(/0.0

\
S1,6[S1,7|S1.8]S19 [S1,10 1.0/1.0/0.3(0.0(0.0

S1,11{51,12|51,13(51,14/51,15 0.9/0.9(/0.2(0.0|0.0

51,16(51,1751,18/51,10{51,20 0.0(0.0{0.0|0.0(0.0

high resolution grid photosite 2
\

S21 (5922523524 |S25 0.0(0.0{0.7 1\.Q

S2,11|52,12|52,13(52,14|S2,15 0.010.0(Q.6(0.9

0.
Su6|S27 [S2s|S2s [S200|  |0.0]0.0]0.7]1.0]0.6
0.
0.

S2.16/592,17[52,18/52,19(52,20 0.0/0.0|/0.0|0.0({0.0

Figure 4. Each row of one camera’s sampling matrix S; is deter-
mined from the overlap of one photosite with the pixels of the
high resolution grid. Note that while all sampling areas of one
camera have the same shape, each camera has a unique sampling
area shape.

4. Camera model

In order to analyze the performance of the camera sys-
tem we model it as a linear system. First, we exclude lens
blur from our model. The subject of this work is superres-
olution at the detector level. Sharpness of the LRIs should
be ensured either by optics optimization or by deblurring
before reconstruction.

The radiance of the scene X is then measured by the
cameras into a set of measurements Y. We consider a pla-
nar scene at distance d. Then, X is the HRI to be recon-
structed and the measurements Y; of a camera ¢ — or one
LRI - are given by

Y; =S;(dX+E, 3

where S; is the sampling matrix of camera ¢ and E is the
measurement noise. X is discretized on a high-resolution,
square cartesian grid (the HRG) and sorted in lexicograph-
ical order. Each row of S; describes one photosite of cam-
era . Row j of S; is calculated as the overlap of photosite
7 with each location on the HRG (Figure 4).

Each photosite of camera ¢ has the same rectangular
shape, with width a; and height b;, measured in units of the
HRG. Different cameras have photosites of distinct shapes,
however, with a unique aspect ratio. To make sure all cam-
eras have the same sensitivity, all photosites have the same
area. When the HRG has n values in X and m values in
Y direction, the LRG has N; = aﬂ values in X and M; = bm
in Y. S; therefore has N; M; X n m elements.

S, depends on object distance d. While the grid of pho-
tosites does not change with d, parallax causes a shift s;
(Equation 2) of the complete LRG, depending on the cam-
era displacement Az. Camera 1 is set as the reference with
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Figure 5. Relative row rank (RRR) of the sampling matrix of a two-
camera system. Numerical rank with a threshold of 0.2 plotted
over the shift between the sampling grids of the two cameras. With
square pixels (black dotted line), RRR is highly shift-dependent.
Anamorphic pixels avoid this problem.

no parallax shift. The shift of the other cameras is calcu-
lated relative to this camera.

We arrive at the complete model by concatenating all
measurement matrices S; vertically into one matrix S. The
resulting measurement vector

Y =S(d)X+E (4)

contains ) . N; M; measurements.

5. Numerical stability and error analysis

To reconstruct the HRI from the measurements, we have
to solve the linear system (4). To develop an intuition for
the complexity of the problem, we next analyse the sam-
pling matrix S(d). We develop two metrics and use them to
compare square and non-square pixel configurations.

First, recall that matrix S(d) has dimensions of
>~ Ni M; x nm. It is obvious that the problem is under-
determined when ZZ N; M; < n m. For square pixels,

this is the case when the number of cameras is smaller than
n m

N T%s implies that the row rank of S is equal to its num-
ber of rows. The system is still underdetermined, however,
when d is so that Az = a; for one of the cameras. Then,
the sampling grids align exactly, some of the rows of S are
now linearly dependent and the row rank of S is smaller
than Z i N, i Mz

We introduce the relative row rank (RRR) as the ratio
between the row rank and the number of rows. It quanti-
fies the actual information a camera system can capture in
a certain configuration — particularly at a specific distance d
— compared to its number of photosites.

We first compare systems of two cameras. Figure 5
shows the relative row rank (RRR) of a square configura-
tion. RRR is plotted over the shift ai measured in LRG

units. When shift is % overlap between sampling units is

minimal and RRR is close to 1. When shift is 0, the sam-

pling grids align exactly and RRR drops to % When we
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Figure 6. Dependency of relative row rank (RRR) on pixel aspect
ratio (AR). For each aspect ratio, the RRR was calculated over a
range of sampling grid shifts. The wider the scatter plot at a spe-
cific AR, the larger the depth dependence at this AR. The drop in
rank is most dramatic for square pixels (AR of 1) and still signif-
icant for AR < 1.4. Aspect ratios with integer values (especially
2) also lead to a depth-dependent rank.

plot numerical rank to account for instabilities from inac-
curate camera alignment and measurement noise, RRR is
significantly smaller than 1 even for s # 0.

The second graph in Figure 5 plots the RRR for two cam-
eras with anamorphic pixels. In this case, the pixel’s as-
pect ratio is 3.2. The RRR is now almost shift-independent,
meaning that the complexity of the reconstruction problem
is independent of object distance. The RRR is also never
significantly lower than RRR for square pixels, indicating
that non-square pixels offer comparable performance even
for favorable shifts.

Next, we use RRR as a metric to find the optimal aspect
ratio (AR) of the pixels. In the case of two cameras, only a
single AR has to be chosen; the second pixel is derived from
the first pixel by rotating it by 90°. This is also beneficial
for the implementation on silicon, as each particular aspect
ratio requires a new pixel design.

In Figure 6, we can see that any AR larger than 1.4 is
a good choice, as the rank is consistently large. However,
integer values should be avoided, as they lead to a drop in
RRR for certain shifts. For these values, a partial alignment
of the sampling grid may still happen for every second or
third pixel.

Next, we examine the robustness to inaccurate knowl-
edge of depth. To this end, we derive the flawed system
matrix S from the true system matrix S by moving each of
the sampling areas by a random vector r with a variance of
o. We generated the low-resolution images Y by applying
S to the high-resolution image X. Then, we estimated X
from Y with the pseudo-inverse of both sampling matrices
S and S. In this way, we obtained an optimal reconstruc-
tion Xtme and a perturbed reconstruction Xerr. From their
differences

€rr; = thrue - Xe'rr”% (5)
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Figure 7. Robustness of reconstruction to inaccurate knowledge of
depth. The sampling pixels are moved from their actual positions
randomly, with variance o. The figure compares the reconstruc-
tion from this flawed matrix to the one from the accurate matrix.
Anamorphic pixels (colored lines) outperform square pixels (black
lines) in most cases. For aspect ratios of 1.4 to 1.6, robustness is
comparable or better than than square pixels in the optimal case.
With zero shift (dotted line), square pixels perform worse than all
tested anamorphic pixels.

we obtain the reconstruction error caused by a perturbed
sampling matrix S.

For X, we used a random set of images randomly down-
loaded from the internet service Flickr [8]. From these im-
ages, we randomly selected small patches containing high
spatial frequencies. In Figure 7, we see that anamorphic
pixels lead to more robust reconstructions for low aspect
ratios. Robustness is worse only for very oblong pixels.

We next used the same database of patches to explore
how the reconstruction error depends on aspect ratio. Now,
we compared the optimal reconstruction with ground truth:

erry = ||Xppue — X||2. (6)

25 3 35
pixel aspect ratio

Figure 8. Mean reconstruction quality for 100 random 50 x 50
patches from 100 images, plotted over the aspect ratio. Low aspect
ratios offer the best performance. Integer aspect ratios or simple
ratios such as % cause partial sampling grid alignment and reduced
quality.



aspect ratio 2
_» ¢

—36

e
25 3 35 4 45 5 PSNR
(dB)

aspect ratio

Figure 9. Mean reconstruction quality (PSNR) for the case of 4
cameras, with 2 pairs of aspect ratios shown on the X and Y axis.
Shift is set to O to emphasize the differences between aspect ratios.
As in Figure 8, lower aspect ratios lead to better results and integer
ARs should be avoided. Furthermore, the aspect ratios of the two
camera pairs should be different from each other.

100 random patches were sampled and reconstructed
with a range of aspect ratios, yielding 100 curves. The mean
of these curves is shown in Figure 8, giving the average re-
construction quality for each aspect ratio. Cameras with
aspect ratios between 1.1 and 2.5 give the best quality, con-
firming matrix analysis (Figure 6). The results also confirm
that integer ARs should be avoided.

Finally, we added two more cameras with a different as-
pect ratio and repeated the simulation. The new camera pair
was shifted vertically, for a 2 x 2 array. Again, the results
confirm the previous simulations (Figure 9). Additionally,
we see that the two sets of cameras should have distinct as-
pect ratios.

6. Image reconstruction

In the last section, we reconstructed the scene by apply-
ing the pseudo-inverse of the sampling matrix to the vector
of low-resolution samples. This approach is sufficient to
calculate the optimal aspect ratio, but is also sensitive to
noise. Furthermore, if the reconstructed HRI has dimen-
sions exceeding the total number of input pixels, the system
would be underdetermined and therefore allow infinite so-
lutions.

A practical and theoretically-sound technique to deal
with such ambiguities or uncertainty in the data is regular-
ization. We therefore pose the image reconstruction task as
the following minimization problem

N 1
X = argmin o |[Y — SX|? + AJ(X) (7)

where A > 0 is a constant that determines the amount of
regularization and J (X)) is the total variation of X reshaped
as an m x n image [15]. To minimize this cost, we em-

ploy an iterative algorithm based on local linearization of
the Euler-Lagrange equation of problem (7), i.e.,
VX ]
IVXql

ST(Y — SX) — A vec [v =0 (8)
where vec[A] denotes the vectorized form of an image A
with pixels arranged in lexicographical order and A de-
notes the opposite transformation. At iteration ¢, the cur-
rent estimated image X is then used to define the local lin-
earization for the next estimate X!
t+1
VX3

ST(Y —SX') —Avec (V- —E2— | =0. (9)
( ) < VX

The linearized system is then solved via a standard con-
jugate gradient descent. More modern techniques can also
be employed, such as [5]. However, the design of the image
reconstruction algorithm is beyond the focus of this paper.

7. Simulations

We now apply the algorithm from the last section to re-
construct images. First, we simulate the imaging process
for four cameras. For each of them, we generate the sam-
pling matrices. The first camera’s matrix is at the origin, the
other camera’s matrices are shifted vertically and/or hori-
zontally to simulate parallax from cameras that are side by
side. A high-resolution image is sampled with these matri-
ces to generate the LRIs. To each LRI, we add Gaussian
noise with variance o. Then, we reconstructed the original
image from the four LRIs. We compare the reconstruction
with the original HRI to quantify reconstruction error.

The downsampling and superresolution factor was set
to 2.5. For square pixels, this is also the pixel pitch. For
anamorphic pixels, a; and b; were adjusted for constant area
a; - b;, ensuring that square and anamorphic LRIs have the
same number of samples.

Figure 10 shows the results of the simulation. In the
case of square pixels, we see that sharpness is is higher
when cameras 2-4 are shifted by %:. When the cameras are
not shifted, the reconstructed image has significantly lower
sharpness.

In the case of anamorphic pixels (AR = 1.3 and 1.56),
image quality is independent of shift and better or compa-
rable to square pixels in both cases.

Next, we examine the influence of the pixel aspect ratio.
A reconstructed image of a resolution chart (Figure 11) sug-
gests that systems with high aspect ratios have better reso-
lution than those with low AR; however, this is only true for
strictly horizontal or vertical frequencies. Diagonal resolu-
tion suffers with high aspect ratios, which leads to artifacts
in natural images. Low aspect ratios yield more balanced
results with less artifacts and are therefore preferable, con-
sistent with Figure 8.
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Figure 10. Reconstruction of a high-resolution image from down-
sampled data. The original (top right) was downsampled by a fac-
tor of 2.5 and degraded with Gaussian noise of o = 1 gray level
(top left, upsampled by interpolation). This process was performed
four times, with the sampling grids either aligned or shifted by
half a pixel pitch, yielding four low-resolution images (LRI). The
different shifts simulate different parallax in a four-camera setup.
Images were then reconstructed from all four LRIs with the algo-
rithm from Section 6. Either square or anamorphic pixels (aspect
ratios of 1.3 and 1.56) were used for the camera model. The in-
set numbers are mean SSIM metrics comparing the reconstructed
image to the original. While quality depends on shift for square
pixels, it is independent of shift for anamorphic pixels.

low aspect ratios

high aspect ratios

Figure 11. A simulation with a resolution chart (top two images)
shows that 4 cameras with high aspect ratio pixels (4.0 and 4.8,
in this case) have a higher horizontal and vertical resolution than
pairs of low-AR cameras (1.3 and 1.56). Diagonal resolution is re-
duced, however, leading to artifacts in details that are neither hori-
zontal nor vertical, which occur in most natural images (examples
in the two rows below the test charts).

Additionally, we explored the performance of anamor-
phic pixels with different magnification factors (Figure 15)
and numbers of cameras (Figure 16). Performance scales
similarly to square pixels, as long as the cameras are shifted
carefully. When the cameras are co-located, sharpness does
not increase for systems with square pixels; only noise is
reduced slightly.

Finally, we found that when reconstructing from a low
number of LRIs and noise level is low, results with anamor-
phic pixels are superior to those with square pixels, even
when the latter are shifted optimally (Figure 14). With in-
creasing noise, the performance gap closes, but even at high
noise levels, sharpness remains comparable.

8. Experiments with anamorphic lenses

Next, we reconstruct images taken with a digital cam-
era. The proposed effect of avoiding sample area overlap is
now accomplished by modifying the imaging lens. When
the objective lens has different reproduction scale in X and
Y direction, the sampling area of a square pixel becomes
elongated. Such a lens is typically called an anamorphic
lens>. With this type of lens, individual cameras can be
given distinct shapes and pitches of their sampling areas,

2 Anamorphic lenses are commonly used in cinematography to widen
the horizontal field of view. A 1:1.3 anamorphic lens, for example, cap-
tures a 16:9 FOV on an image sensor with a 4:3 aspect ratio. Other optical



Figure 12. Experimental setup with camera, lens and anamorphic
adapter (left). Looking through the adapter, the round lens of the
camera is distorted into an oval (right).

even when these cameras have standard image sensors with
square pixels.

We recorded a flat lab scene with an industrial camera,
the Allied Vision GE1050 with 5 pm pixel pitch (Figure
12). Instead of an anamorphic lens, we used a conventional
spherical lens and an anamorphic adapter. The lens was
a Fujinon HF16SA-1, set to F4 for maximum sharpness.
The anamorphic adapter consists of two cylindrical lens ele-
ments. It can be attached to the front of a standard objective
lens, widening its horizontal FOV. Commercially avaliable
models have nominal aspect ratios of either 1:1.33 or 1:2.
From Figure 8, we chose the former. The actual AR at the
scene distance was measured as 1.22.

We took exposures from different viewpoints, spaced
1 mm apart. From each position, we shot with and with-
out the anamorphic adapter. At all positions, the adapter
was also rotated 90° to achieve two distinct sampling areas.
The recorded images were first downsampled by a factor of
4 to obtain the LRIs. Then, we applied superresolution with
a factor of 2.

In horizontal position, an anamorphic adapter increases
the FOV horizontally, also increasing the width of the sam-
pling area on the object. The height is not affected. In total,
the integration area of each sample increases, leading to a
lower number of samples on the same object area. To make
sure that LRIs taken with and without anamorphic adapter
have the same number of samples and show the same part
of the scene, we moved the camera backwards for the expo-
sures without the adapter. The distance to the object has to
be increased by a factor of v/AR.

Figure 13 shows details from the full images. First, we
can see that reconstruction is always sharper than simple in-
terpolation from one image. In the worst case, however, a
superresolved image from two LRIs without adapter is iden-

effects, such as different resolution and depth of field in X and Y direction,
are unintended byproducts.
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Figure 13. Superresolution from photographs of a natural scene.
Photos taken either with or without an anamorphic adapter, yield-
ing square or anamorphic sampling areas. Reconstruction from
image pairs taken from shifted camera positions. For square pix-
els, reconstruction quality depends on shift; anamorphic pixels re-
duce this dependency. Please refer to the supplemental material
for the full images.

tical to the reconstruction from just one image. When the
anamorphic adapter was used, the version calculated from
two images is always superior.

9. Conclusion

We have shown that a custom design of the image sensor
pixels simplifies the superresolution problem with multi-
view systems. Cases where resolution drops because of
sampling grid alignment are avoided. When each channel
or camera has a unique, non-square pixel shape, the linear
system is better conditioned and the reconstruction is more
robust, leading to better resolution and fewer artifacts.

Our findings apply to camera arrays and microscopic
multi-aperture systems as well as plenoptic cameras. Our
solution can be implemented with technology that is read-
ily available, either with a modified image sensor or with
anamorphic optics. By making superresolution more prac-
tical for multi-view systems, achieving adequate resolutions
is now feasible and these systems themselves become more
useful for traditional photography.

In the future, we hope to implement our solution with
microoptical anamorphic lenses, exploring the relation be-
tween geometric distortion and image reconstruction in
multi-view systems. We also plan to extend our reconstruc-
tion techniques to arbitrary scenes and reconstruct depth-
maps along with high-resolution images.



square pixels, best case anamorphic pixels

square pixels, worst case

Figure 14. Reconstruction for 4 different noise levels (c = 0 to
5 gray levels). Magnification of 2.5, two cameras, anamorphic
pixels with an aspect ratio of 1.3. Anamorphic pixels outperform
square pixels significantly for low noise levels. While noise com-
promises reconstruction quality in general and therefore closes the
gap between different sampling schemes, results with anamorphic
pixels remain comparable to square pixels even in the optimal
case.
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