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Abstract
In this paper we present an algorithm for depth estimation

from a monocular video sequence containing moving and

deformable objects. The method is based on a coded aper-

ture system (i.e., a conventional camera with a mask placed

on the main lens) and it takes a coded video as input to pro-

vide a sequence of dense depth maps as output. To deal with

nonrigid deformations, our work builds on the state-of-the-

art single-image depth estimation algorithm. Since single-

image depth estimation is very ill-posed, we cast the recon-

struction task as a regularized algorithm based on nonlocal-

means filtering applied to both the spatial and temporal do-

main. Our assumption is that regions with similar texture

in the same frame and in neighbouring frames are likely

to belong to the same surface. Moreover, we show how to

increase the computational efficiency of the method. The

proposed algorithm has been successfully tested on chal-

lenging real scenarios.

1 Introduction
Estimating the three-dimensional (3D) location of objects

in the scene is a crucial step for performing tasks such as

human-machine interaction, tracking, and autonomous nav-

igation. While 3D structure can be recovered by using mul-

tiple cameras or depth sensors, we investigate the use of a

single camera, which can reduce the cost of the system, and

be combined with other sensors to further improve the over-

all accuracy of depth estimation. Typical approaches based

on single cameras (e.g, optical flow), can be used to esti-

mate depth in the presence of rigid motion, but not with

general motion due to deformable or articulated objects.

Since no information about the objects and their motion is

given, we cannot rely on matching multiple frames; instead,

we use the information that is present in each single frame.

Furthermore, to make the depth estimates consistent in time

and space, we cast the depth estimation problem as a regu-

larized optimization task. In summary, this work provides

the following three main contributions: 1) It presents, to the

best of our knowledge, the first single-frame video depth

estimation algorithm, capable of handling moving and de-

formable objects; 2) It introduces a novel spatial and tempo-

ral depth smoothness constraint, based on nonlocal-means

(NLM) filtering: Pixels whose intensities match within a

certain spatial and temporal range are likely to share simi-

lar depths; 3) The proposed algorithm is robust and accurate
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Figure 1: Depth estimation with deformable objects. a)

and b) Two input frames in the video sequence; c) and d)

Relative depth maps obtained from our method.

on real videos (see Fig. 1).

2 Related Work
When a scene undergoes rigid motion, depth estimation

from a single video can be carried out in several ways. The

two most common techniques are optical flow and structure

from motion. The former technique consists of finding cor-

respondences between neighbouring frames and measuring

the difference of their position: The shift is related to the

depth of the scene only when the camera is moving and the

scene is rigid [11, 17]. Models for non-rigid structures have

been proposed in structure from motion [20, 21, 27], but

they assume that feature correspondences are known [27]

or occluders are treated as outliers [20, 21, 25] and there-

fore not reconstructed. Instead, the approach presented in

this paper estimates the depth of the whole scene. High-

quality depth maps have been obtained in [26] from a video

sequence captured with a freely moving camera. However,

the method fails when moving or deformable objects are

present in most of the area of the scene.

Our algorithm does not rely on matching multiple frames.

Since depth information is extracted at each frame, it re-

lates to work on single-image depth estimation. One of the

most successful technology in depth estimation is the use



of active illumination: By projecting some structured light

into the scene and then measuring the blur of the light pat-

tern [8] or light dots [14] in the captured image has led to

good results in depth estimation. Particularly relevant is the

recent introduction of Kinect [23], a depth camera based on

structured light in the infrared (IR) range. Among passive

methods on single image depth estimation, the main con-

tributions are perhaps from [10] and [22], who show that

the introduction of a mask in the camera lens can improve

the blur identification (and therefore the depth reconstruc-

tion). Both works propose a method for estimating both

depth and all-in-focus texture from a single coded image.

The main drawback is that the methods are based on de-

convolution and can deal only with small amounts of blur.

More recently, [12] and [13] has shown that depth can ac-

tually be recovered from a single image without estimating

the radiance. Our algorithm is an extension of the latter

work to video sequences. Moreover, we show that we can

rewrite the energy minimization in a more efficient way, so

that the method can be used to process videos quickly. In

our experiments, we use the aperture in Fig. 2(a), since it

gives the best performance on depth estimation among all

the binary aperture masks proposed in the literature [13].

To regularize our estimation, the concept of non-local mean

filters is applied to depth reconstruction: The main idea is

to link the depth values of pixels sharing the same colour

(or texture). The concept of correlating pixels with similar

colour or texture has been shown to be particularly effec-

tive in preserving edges in stereopsis [5, 16, 18] and thin

structure in depth estimation [6, 17], as well as in image

denoising [2, 15, 19].

3 Depth Estimation from Monocular Video

When a part of the scene is brought into focus, objects

placed at a different location appear out-of-focus; the

amount of defocus depends on their location in the scene:

More precisely, it depends on the distance between the ob-

jects and the focal plane. Because of this relationship, if

we can identify the blur kernel for each object point in the

scene, we can reconstruct the relative depth of the items in

the scene. The exact distance from the camera can also be

recovered from the blur size with a calibration procedure,

once the camera setting is known.

In this section, we present the depth estimation algorithm,

which takes as input a video sequence captured by a single

coded aperture camera. As described in Section 1, we con-

sider videos with moving and deformable objects: There-

fore we cannot rely on matching multiple frames.

3.1 Image Formation Model

When we capture a video with a coded aperture camera, we

have a set of T coded frames g1, g2, . . . , gT . For each of

these frames, the 3D scene, captured at a particular time

t, can be decomposed in two entities: a 2D sharp frame ft,

whose texture is all-in-focus, and a depth map dt, which as-

signs a depth value (distance from the camera) to each pixel

in ft. Our aim is to recover the geometry dt of the scene

(a) (b)

Figure 2: Binary aperture mask and corresponding
point spread functions (PSF). (a) A coded aperture cam-

era is obtained by placing an mask into the camera lens; (b)

Examples of point spread functions obtained with the mask

in (a) at different depths.

at each time instant t. As previously described, different

depths correspond to different blur sizes in the coded im-

age gt. Hence, the blur kernel hp, also called point spread

function (PSF), must be allowed to vary at each pixel. Two

examples of PSFs of our coded aperture systems are shown

in Fig. 2(b). If we consider all the elements ordered as

column vectors, we can write gt as a product of matrices

gt =
[
h1 h2 . . . hN

]
︸ ︷︷ ︸

Hdt

·

⎡
⎢⎢⎢⎣

f1

f2

...

fN

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ft, (1)

where N is the number of pixels of each frame and Hdt is a

symmetric and sparse matrix that contains the information

about the depth of the scene.

Since the scene is non-rigid (and hence we cannot rely on

matching multiple frames), and since the sharp frames ft

are unknown, we should, in principle, simultaneously esti-

mate both depth and all-in-focus image from gt. However,

it has been shown in [7] that this problem can be divided

and solved in two separate steps: 1) depth estimation only

and 2) image deblurring by using the estimated depth. In

this paper, we focus our work on the former step.

We formulate the problem of depth estimation as a mini-

mization of the cost functional

d̂ = argmin
d

Edata[d] + α1Etv[d] + α2Enlm[d] , (2)

where α1 and α2 are two positive constants. In our ap-

proach, the data fidelity term Edata[d] is based on depth

from a single image (see Section 3.2) and we concentrate

more on designing the regularization terms (Section 3.3).

3.2 The Data Fidelity Term: Depth from a Single
Frame

The first term is based on the state-of-the-art depth from

single coded image algorithm [13]. The method identifies



the blur size (and therefore the depth) at each pixel of a

coded image by using projections onto subspaces. In our

case, the depth dt can be extracted from the single frame gt

without deblurring the image ft, by minimizing

Edata[d] =
∑
p

||H⊥
dt(p)g̃

p
t ||22 (3)

where g̃p
t indicates the patch of size δ×δ centred at the pixel

p at time t, that has been rearranged as a column vector.

The symbol δ denotes the size of the maximum level of

defocus considered. The matrix H⊥
dt

is built via a learning

procedure, described in details in [13], for each depth level

d such that {
H⊥

di
Hdj

≈ 0, if di = dj

H⊥
di

Hdj
� 0, if di �= dj

(4)

for any possible sharp texture ft.

A remarkable fact is that, for the purpose of depth estima-

tion alone, there is no need to know the shape of the mask:

In fact, the learning is performed on real coded images of

a planar plane (with texture), placed at different distances

from the camera.

Since we are processing videos, in Section 4.1 we work out

possible solutions to approximate equation (3) in order to

increase the efficiency of this algorithm and make it suitable

for parallel computation.

3.3 Total Variation and Non-Local Means Filtering

The first regularization term Etv[d] in Equation (2) repre-

sents the total variation

Etv[d] =
∫

‖∇d(p)‖ dp , (5)

which constrains the solutions to be piecewise constant [4].

However, this term alone tends to misplace the edge loca-

tion and to remove thin surfaces, since it can combine to-

gether pixels that do not belong to the same surface.

To contrast this behaviour, we design a term that links

depth values of pixels sharing the same colour (or tex-

ture) Enlm[d]. Corresponding pixels can belong either to

the same frame (Section 3.3.1) or to different frames (Sec-

tion 3.3.2).

3.3.1 Spatial Smoothness

In this section we briefly analyze how neighbourhood filter-

ing methods establish correspondences between pixels and

then extend the concept to a video sequence.

Many depth estimation methods assume that pixels with the

same color or texture are likely to share also the same depth

value. This can be obtained with a non-local sigma-filter

[9], based on intensity differences

W1(p,q) = e−
|g(p)−g(q)|2

τ1 , (6)

where the weight assigned to W1(p,q) represents how

strong the link between p and q is, or, in other words, how

likely they are to be located at the same depth. The symbol

τ1 indicates the bandwidth parameter determining the size

of the filter. Loosely speaking, pixels with values much

closer to each other than τ1 are linked together, while the

ones with values much larger than τ1 are not.

This type of filter has been largely used for image denois-

ing, although it generates artifacts at edges and uniform

regions [3], probably due to the pixel-based matching be-

ing sensitive to noise: To reduce this effect, one could use

region-based matching as in the non-local means filter [6]:

W1(p,q) = e−
Gσ∗|g(p)−g(q)|2(0)

τ1 (7)

where G is an isotropic Gaussian kernel with variance σ
such that

Gσ∗|g(p)−g(q)|2(0) =
∫

R2
Gσ(x)|g(p+x)−g(q+x)|2|dx.

(8)

Now we have obtained a neighbourhood filter for combin-

ing pixels in the same frame. However, since we have

multiple frames, we can extend the correspondences tem-

porally.

3.3.2 Temporal Smoothness

If objects do not move much between neighbouring frames,

we can easily find correspondences (despite deformations

of the objects).

Let us consider a pixel p from a frame gt0 (captured at time

t0). We can rewrite the filter in equation (7) in a more gen-

eral form where the pixel q is now free to belong to any

frame gt of the video sequence

W1(p, t0,q, t) = e−
Gσ∗|gt0 (p)−gt(q)|2(0)

τ1 , (9)

which included the case when t = t0. Indeed, when consid-

ering the frame gt0 , the probability to find the same objects

(or part of them) in another frame gt decays moving away

from the time t0. Hence, we can add a filter that implements

this likelihood:

W2(t0, t) = e−
|t−t0|

τ2 (10)

where τ2 is the bandwidth parameter in the temporal

domain. This parameter is very important in deciding the

number of frames to consider in the regularization.

We can now combine the spatial filter (equation (7)) and the

temporal filter (equation (10)) together to obtain the final

filtering weights

W (p, t0,q, t) = e−
|t−t0|

τ2 e−
Gσ∗|gt0 (p)−gt(q)|2(0)

τ1 . (11)

Notice that when the temporal term uses only 2 frames, t0
and t1, the corresponding pixels given by W (p,q, t0, t1)
include the matchings obtained from optical flow.

Finally, we use the sparse matrix W (p, t0,q, t) to define

our neighbourhood regularization term, so that pixels with



similar colors are encouraged to have similar depths value,

i.e.,

Enlm[d] =
∫ ∫

W (p, t0,q, t) (dt(q) − dt0(p))2 dq dt.

(12)

where p and q represent any pixel in the video sequence.

The term Enlm is quadratic in the unknown depth map d
and therefore it can be easily minimized.

4 Implementation Details
In this section we first study the data fidelity term equa-

tion (2) and find a sound approximation to improve the effi-

ciency of the proposed method (Section 4.1). Secondly, we

describe the iterative approach we adopt to minimize the

cost functional in equation (2) (Section 4.2).

4.1 Filters Decomposition for Parallel Computation

We focus now on the computation of the data term Edata[d].
This term can quickly generate a non-regularized depth

mapth (also called raw depth map), when α1 = α2 = 0
in Equation (2)). In this section, the subscripts (t) should

be used, but are omitted for simplicity; the patches g̃p
t will

then be denoted by g̃p.

Since H⊥
d is a projection, we can rewrite equation (3) as

Edata[d] =
∑
p

g̃T
p H⊥

d(p) g̃p . (13)

The computation of this term is suitable for parallel com-

putation, since we can obtain a depth value at each pixel

p, independently from the other pixels. Also, we have that

H⊥
d = Ud UT

d , where Ud is a matrix with orthonormal

column vectors by construction [7]. Then, equation (13)

can be computed and represented (in memory) more effi-

ciently as:

Edata[d(p)] = ‖g̃T
p Ud(p)‖2. (14)

When using equation (14) as fidelity term, a raw depth map

of size 500 × 600 pixels can be obtained in about 200 s.

We look now into the set of matrices Ud to check if there

are possible approximations that can be adopted. The ma-

trix Ud = [u1,d u2,d . . . uM,d] has size δ2 × M , and

its columns are orthonormal filters [7]. Therefore, equa-

tion (14) can be thought as a series of 2D convolutions be-

tween the whole image g and each column of Ud (both

reshaped to 2D). This is done for each depth level d: we

can then say that, to estimate the depth map for each frame

of the video sequence, we have to compute M × Nd 2D-

convolutions, where Nd is the number of depth levels being

considered. Just to have an idea of the dimensions we are

dealing with, in our experiments we have M � 150 and

Nd = 30.

Since the total numbers of filters we use for each mask is

much bigger than the size of each filter itself (δ × δ, with

δ = 33), we can express each orthonormal filter uk,d as a

linear combination of a common basis B:

uk,d =
[
b1 b2 . . . bL

]
︸ ︷︷ ︸

B

· ak,d, (15)
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Figure 3: Eigenvalues of S. The graph shows the values

along the diagonal of S; such values correspond to the

eigenvalues of the matrix Ũ .

where ak,d is a column vector containing the coefficients

for the k-th filter at the depth d. By substituting equa-

tion (15) in equation (14), we can rewrite the fidelity term

as

Edata[d(p)] =
∥∥g̃T

p B Ad(p)

∥∥2
. (16)

with Ad(p) = [a1,d a2,d . . . aM,d].
Notice that with this formulation we have reduced the num-

ber of 2D convolutions to the number of columns of B; in

other words, the complexity corresponds to the number of

vectors that compose the common basis (in our experiments

there are about 200 vectors). The depth map at each frame

(500×600 pixels) can now be estimated in about 4 seconds.

In the following two sections we illustrate how to esti-

mate the common basis B and the matrix of coefficients A.

These steps have to be run just once, right after the learning

of H⊥
d for a given mask.

4.1.1 Estimating the Common Basis B

We build Ũ (of size δ2 × M × Nd) by joining in the third

dimensions the matrices Ud for all possible depth levels,

1 < d < Nd. We then perform the singular value decom-

position (SVD) of Ũ = WSV T : the most important or-
thogonal vectors that are in the left part of the matrix W .

The diagonal of S contains the eigenvalues, i.e., the values

that indicate the importance of each column of W to gener-

ate the space Ũ . The values along the diagonal are plotted

in Fig. 3.

The basis B is then composed by the most important col-

umn of W ; experimentally, we have seen that the first 200

vectors are a good approximation for generating the space

of Ũ .

4.1.2 Estimating the Coefficients ak,d

Now that we have the common basis B, for each filter uk,d

we have to estimate the coefficients ak,d, such that eq. (15)

is satisfied. This can be done via:

aT
k,d = uT

k,dB
T (BBT ). (17)



Frame #30 Frame #50 Frame #210 Frame #230

Figure 4: Table dataset. Top row: Some of the frames of the coded input video; Central row: Raw depth maps estimated

only with the data fidelity term, and without any regularization (α1 = α2 = 0) ; Bottom row: Final depth maps obtained

with our method.

4.2 Iterative Linearization Approach

We solve the Euler-Lagrange equations of the cost func-

tional in equation (2)

∇E[d] .= ∇Edata[d] + α1∇Etv[d] + α2∇Esm[d] (18)

via iterative linearization [1]. The second and third terms

are can be computed easily as

∇Etv[d] = −∇ ·
( ∇d(p)
|∇d(p)|

)
(19)

and

∇Enlm[d] =
∫ ∫

W (p,q, t0, t) (d(p) − d(q)) dq dt

(20)

while the data fidelity term requires a further analysis. In

fact, the energy Edata[d] is non convex. Therefore, we ex-

pand our energy in Taylor series (stopping at the third term)

Edata[d] = Edata[d0] + ∇Edata[d0](d − d0) (21)

+
1
2
(d − d0)T HEdata[d0](d − d0) , (22)

where H indicates the Hessian. Now we can compute its

derivative with respect to d

∇Edata[d] = ∇Edata[d0] + HEdata[d0](d − d0) , (23)

where d0 represents the initial depth estimate obtained

when setting α1 = α2 = 0.

Since the conditions for convergence require HEdata[d0]
to be positive-definite, we use |HEdata[d0]| and make it

strictly diagonally dominant [24].

5 Experiments on Real Data
We have captured some videos using our coded aperture

camera, a Canon EOS-5D Mark-II, where a mask has been

inserted into a 50mm f/1.4 lens (as displayed in Fig. 2(a)).

The two datasets shown in this paper, Fig. 4 and Fig. 5,

are very challenging scenario for depth estimation using

a single camera. For both datasets, we show some coded

frames from the video sequence and their corresponding

estimated depth maps. Below each input frame there are

two depth maps: 1) the raw depth map (central row), ob-

tained by minimizing only the term Edata and 2) the final

depth map (bottom row) resulting from minimizing the cost

in equation (2).

Both videos have been taken when the camera was hand-

held, and therefore the camera is also moving. The depth

estimation, however, it is not affected by this shake. The

video shown in Fig. 5 has been captured indoor in a very

low light condition; therefore the input video is very noisy

(ISO 2000). Nevertheless, the method still outputs impres-

sive results, proving its robustness and consistency. More-

over, the quality of the results in this dataset may suggest

that they can be used for tasks such as body pose estimation,

or body part recognition.

6 Conclusion
We have presented for the first time a method to estimate

depth from a single video with moving and deformable ob-

jects. The approach is based on coded aperture technology,

where a mask is placed on the lens of a conventional cam-

era. Firstly, we analyze and improve the efficiency of state-



Frame #20 Frame #50 Frame #60 Frame #130

Figure 5: People Dataset. Top row: Some examples of frames from the coded input video; Bottom row: Depth maps

reconstructed with our method.

of-the-art depth estimation from a single coded image. Sec-

ondly, we introduce a regularization term, based non-local

means filtering, that creates at the same time a spatial and

temporal neighbourhood of pixels that are likely to share

the same depth value. The method is then tested on real

data and high-quality depth maps are obtained from very

challenging scenes.

References
[1] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.
ECCV, 4:25–36, May 2004.

[2] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm
for image denoising. CVPR, 2005.

[3] A. Buades, B. Coll, and J.-M. Morel. Nonlocal image and
movie denoising. IJCV, 76(2):123–139, 2007.

[4] T. F. Chan and J. Shen. Image processing and analysis: vari-
ational, PDE, wavelet, and stochastic methods. Society for
Industrial and Applied Mathematics, 2005.

[5] D.Nister, H. Stewenius, R. Yang, L. Wang, and Q. Yang.
Stereo matching with color-weighted correlation, hierachi-
cal belief propagation and occlusion handling. CVPR,
2:2347–2354, 2006.

[6] P. Favaro. Recovering thin structures via nonlocal-means
regularization with application to depth from defocus.
CVPR, pages 1133 – 1140, Jun 2010.

[7] P. Favaro and S. Soatto. A geometric approach to shape from
defocus. TPAMI, 27(3):406–417, Mar 2005.

[8] B. Girod and E. H. Adelson. System for ascertaining direc-
tion of blur in a range-from-defocus camera. US Patent No.
4,939,515, 1990.

[9] J. Lee. Digital image smoothing and the sigma filter. Com-
puter Vision, Graphics and Image Processing, 24(2):255–
269, Nov 1983.

[10] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image
and depth from a conventional camera with a coded aperture.
ACM Trans. Graph., 26(3):70, Aug 2007.

[11] C. Liu. Beyond pixels: Exploring new representations and
applications for motion analysis. Doctoral Thesis, Mas-
sachusetts Institute of Technology, May 2009.

[12] M. Martinello, T. E. Bishop, and P. Favaro. A bayesian ap-
proach to shape from coded aperture. ICIP, Sep 2010.

[13] M. Martinello and P. Favaro. Single image blind deconvo-
lution with higher-order texture statistics. Video Processing
and Computational Video, LNCS7082, 2011.

[14] F. Moreno-Noguer, P. N. Belhumeur, and S. K. Nayar. Active
refocusing of images and videos. ACM Trans. Graph., Aug
2007.

[15] J. Salmon and Y. Strozecki. From patches to pixel in non-
local methods: weighted-avarage reprojection. ICIP, 2010.

[16] B. Smith, L. Zhang, and H. Jin. Stereo matching with non-
parametric smoothness priors in feature space. CVPR, pages
485–492, 2009.

[17] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow
estimation and their principles. CVPR, Jun 2010.

[18] H. Tao, H. Sawhney, and R. Kumar. Dynamic depth recovery
from multiple synchronized video streams. CVPR, 1:118–
124, 2001.

[19] C. Tomasi and R. Manduchi. Bilateral filters for gray and
color images. ICCV, pages 839–846, 1998.

[20] L. Torresani and A. Hertzmann. Automatic non-rigid 3d
modeling from video. ECCV, pages 299–312, 2004.

[21] L. Torresani, A. Hertzmann, and C. Bregler. Non-rigid
structure-from-motion: Estimating shape and motion with
hierarchical priors. PAMI, 30(5):878–892, May 2008.

[22] A. Veeraraghavan, R. Raskar, A.K. Agrawal, A. Mohan, and
J. Tumblin. Dappled photography: mask enhanced cameras
for heterodyned light fields and coded aperture refocusing.
ACM Trans. Graph., 26(3):69, Aug 2007.

[23] Microsoft Corp. Redmond WA. Kinect for Xbox 360.

[24] D. M. Young. Iterative solution of large linear systems. Aca-
demic Press, 1971.

[25] G. Zhang, J. Jia, W. Hua, and H. Bao. Robust bilayer
segmentation and motion/depth estimation with a handheld
camera. PAMI, pages 603–617, 2011.

[26] G. Zhang, J. Jia, T.-T. Wong, and H. Bao. Consistent depth
maps recovery from a video sequence. PAMI, pages 974–
988, 2009.

[27] S. Zhu, L. Zhang, and B. M. Smith. Model evolution: An
incremental approach to non-rigid structure from motion.
CVPR, pages 1165–1172, 2010.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /SABAEN44
    /SAKURAalp
    /Shruti
    /SimSun
    /STSong
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


