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Abstract. We present a novel method for solving blind deconvolution,
i.e., the task of recovering a sharp image given a blurry one. We focus on
blurry images obtained from a coded aperture camera, where both the
camera and the scene are static, and allow blur to vary across the image
domain. As most methods for blind deconvolution, we solve the prob-
lem in two steps: First, we estimate the coded blur scale at each pixel;
second, we deconvolve the blurry image given the estimated blur. Our
approach is to use linear high-order priors for texture and second-order
priors for the blur scale map, i.e., constraints involving two pixels at a
time. We show that by incorporating the texture priors in a least-squares
energy minimization we can transform the initial blind deconvolution
task in a simpler optimization problem. One of the striking features of
the simplified optimization problem is that the parameters that define
the functional can be learned offline directly from natural images via sin-
gular value decomposition. We also show a geometrical interpretation of
image blurring and explain our method from this viewpoint. In doing so
we devise a novel technique to design optimally coded apertures. Finally,
our coded blur identification results in computing convolutions, rather
than deconvolutions, which are stable operations. We will demonstrate
in several experiments that this additional stability allows the method to
deal with large blur. We also compare our method to existing algorithms
in the literature and show that we achieve state-of-the-art performance
with both synthetic and real data.

Keywords: coded aperture, single image, image deblurring, depth esti-
mation.

1 Introduction

Recently there has been enormous progress in image deblurring from a single
image. Perhaps one of the most remarkable results is to have shown that it is
possible to extend the depth of field of a camera by modifying the camera optical
response [1,2,3,4,5,6,7]. Moreover, techniques based on applying a mask at the
lens aperture have demonstrated the ability to recover a coarse depth of the

� This research was partly supported by SELEX Galileo grant SELEX/HWU/
2010/SOW3.

D. Cremers et al. (Eds.): Video Processing and Computational Video, LNCS 7082, pp. 124–151, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Single Image Blind Deconvolution with Higher-Order Texture Statistics 125

(a) (b)

Fig. 1. Results on an outdoor scene [exposure time 1/200s]. (a) Blurry coded
image captured with mask b (see Fig. 4). (b) Sharp image reconstructed with our
method.

scene [4,5,8]. Depth has then been used for digital refocusing [9] and advanced
image editing.

In this paper we present a novel method for image deblurring and demonstrate
it on blurred images obtained from a coded aperture camera. Our algorithm uses
as input a single blurred image (see Fig. 1 (a)) and automatically returns the
corresponding sharp one (see Fig. 1 (b)). Our main contribution is to provide
a computationally efficient method that achieves state-of-the-art performance
in terms of depth and image reconstruction with coded aperture cameras. We
demonstrate experimentally that our algorithm can deal with larger amounts of
blur than previous coded aperture methods.

One of the leading approaches in the literature [5] recovers a sharp image by
sequentially testing a deconvolution method for several given hypotheses for the
blur scale. Then, the blur scale that yields a sharp image that is consistent with
both the model and the texture priors is chosen. In contrast, in our approach we
show that one can identify the blur scale by computing convolutions, rather than
deconvolutions, of the blurry image with a finite set of filters. As a consequence,
our method is numerically stable especially when dealing with large blur scales.
In the next sections, we present all the steps needed to define our algorithm for
image deblurring. The task is split in two steps: First the blur scale is identified
and second, the coded image is deblurred with the estimated blur scale. We
present an algorithm for blur scale identification in section 3.1. Image deblurring
is then solved iteratively in section 3.2. A discussion on mask selection is then
presented in section 4.1. Comparisons to existing methods are shown in section 5.

1.1 Prior Work

This work relates to several fields ranging from computer vision to image and
signal processing, and from optics to astronomy and computer graphics. For
simplicity, we group past work based on the technique being employed.
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Coded Imaging: Early work in coded imaging appears in the field of astronomy.
One of the most interesting pattern designs is the Modified Uniformly Redundant
Arrays (MURA) [10] for which a simple coding and decoding procedure was
devised (see one such pattern in Fig. 4). In our tests the MURA pattern seems
very well behaved, but too sensitive to noise (see Fig. 5). Coded patterns have
also been used to design lensless systems, but these systems require either long
exposures or are sensitive to noise [11]. More recently, coding of the exposure [12]
or of the aperture [4] has been used to preserve high spatial frequencies in blurred
images so that deblurring is well-posed. We test the mask proposed in [4] and
find that it works well for image deblurring, but not for blur scale identification.
A mask that we have tested and has yielded good performance is the four-holes
mask of Hiura and Matsuyama [13]. In [13] however, the authors used multiple
images. A study on good apertures for deblurring multiple coded images via
Wiener filtering has instead led to two novel designs [14,15]. Although the masks
were designed to be used together, we have tested each of them independently
for comparisons purposes. We found, as predicted by the authors, that the masks
are quite robust to noise and quite well designed for image deblurring. Image
deblurring and depth estimation with a coded aperture camera has also been
demonstrated by Levin et al. [5]. One of their main contributions is the design
of an optimal mask. We indeed find this mask quite effective both on synthetic
data and real data. However, as already noticed in [16], we have found that the
coded aperture technique, if approached as in [5], fails when dealing with large
blur amounts. The method we propose in this paper, instead, overtakes this
limitation, especially when using the four-hole mask. Finally, a design based on
annular masks has also been proposed in [17] and has been exploited for depth
estimation in [3]. We also tested this mask in our experiments, but, contrary to
our expectations, we did not find its performance superior to the other masks.

3D Point Spread Functions: While there are several techniques to extract
depth from images, we briefly mention some recent work by Greengard et al. [18]
because their optical design included and exploited diffraction effects. They in-
vestigated 3D point spread functions (PSF) whose transverse cross sections ro-
tate as a result of diffraction, and showed that such PSFs yield an order of
magnitude increase in the sensitivity with respect to depth variations. The main
drawback however, is that the depth range and resolution is limited due to the
angular resolution of the reconstructed PSF.

Depth-Invariant Blur: An alternative approach to coded imaging is wavefront
coding. The key idea is to use aspheric lenses to render the lens point spread
function (PSF) depth-invariant. Then, shift-invariant deblurring with a fixed
known blur can be applied to sharpen the image [19,20]. However, while the
results are quite promising, the PSF is not fully depth-invariant and artifacts
are still present in the reconstructed image. Other techniques based on depth-
invariant PSFs exploit the chromatic aberrations of lenses [7] or use diffusion
[21]. However, in the first case, as the focal sweep is across the spectrum, the
method is mostly designed for grayscale imaging. While the results shown in
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these recent works are stunning, there are two inherent limitations: 1) Depth is
lost in the imaging process; 2) In general, as method based on focal sweep are
not exactly depth-invariant, the deblurring performance decays for objects that
are too close or too far away from the camera.

Multiple Viewpoint: The extension of the depth of field can also be achieved
by using multiple images and/or multiple viewpoints. One technique is to obtain
multiple viewpoints by capturing multiple coded images [8,13,22] or by capturing
a single image by using a plenoptic camera [9,6,23,24]. These methods however,
exploit multiple images or require a more costly optical design (e.g., a calibrated
microlens array).

Motion Deblurring and Blind Deconvolution: This work also relates to
work in blind deconvolution, and in particular on motion deblurring. There
has been a quite steady progress in uniform motion deblurring [25,26,27,28,29]
thanks to the modeling and exploitation of texture statistics. Although these
methods deal with an unknown and general blur pattern, they assume that blur
is not changing across the image domain. More recently, the space-varying case
has been studied [30,31,32] albeit with some restrictions on the type of motion
or the scene depth structure.

Blurred Face Recognition: Work in the recognition of blurred faces [33] is also
related to our method. Their approach extracts features from motion-blurred
images of faces and then uses the subspace distance to identify the blur. In
contrast, our method can be applied to space-varying blur and our analysis
provides a novel method to evaluate (and design) masks.

2 Single Image Blind Deconvolution

Blind deconvolution from a single image is a very challenging problem: We need
to recover more unknowns than the available observations. This challenge will
be illustrated in the next section, where we present the image formation model
of a blurred image obtained from a coded aperture camera. To make the prob-
lem feasible and well-behaved, one can introduce additional constraints on the
solution. In particular, we constrain the higher-order statistics of sharp texture
(sec. 2.2) and impose that the blur scale be piecewise smooth across the image
pixels (sec. 2.3).

2.1 Image Model

In the simplest instance, a blurred image of a plane facing the camera can be
described via the convolution of a sharp image with the blur kernel. However, the
convolutional model breaks down with more general surfaces and, in particular,
at occlusion boundaries. In this case, one can describe a blurred image with a
linear model. For the sake of notational simplicity, we write images as column
vectors, where all pixels are sorted in lexicographical order. Thus, a blurred
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image with N pixels is a column vector g ∈ R
N . Similarly, a sharp image with

M pixels is a column vector f ∈ R
M . Then, g satisfies

g = Hdf , (1)

where the N × M matrix Hd represents the coded blur. d is a column vector
with M pixels and collects the blur scale corresponding to each pixel of f . The
i-th column of Hd is an image, rearranged as a vector, of the coded blur with
scale di generated by the i-th pixel of f . Notice that this model is indeed a
generalization of the convolutional case. In the convolutional model, Hd reduces
to a Toeplitz matrix.

Our task is to recover the unknown sharp image f given the blurred image g.
To achieve this goal it is necessary to recover the blur scale at each pixel d. The
theory of linear algebra tells us that: If N = M and the equations in eq. (1) are
not linearly dependent, and we are given both g and Hd, then we can recover
the sharp image f . However, in our case we are not given the matrix Hd and
the blurred image g is affected by noise. This introduces two challenges: First,
to obtain Hd we need to retrieve the blur scale d; second, because of noise in
g and of the ill-conditioning of the linear system in eq. (1), the estimation of
f might be unstable. The first challenge implies that we do not have a unique
solution. The second challenge implies that even if the solution were unique, its
estimation would not be reliable. However, not all is lost. It is possible to add
more equations to eq. (1) until a unique reliable solution can be obtained. This
technique is based on observing that, typically, one expects the unknown sharp
image and blur scale map to have some regularity. For instance, both sharp
textures and blur scale maps are not likely to look like noise. In the next two
sections we will present and illustrate our sharp image and blur scale priors.

2.2 Sharp Image Prior

Images of the real world exhibit statistical regularities that have been studied
intensively in the past 20 years and have been linked to the human visual system
and its evolution [34]. For the purpose of image deblurring, the most important
aspect of this study is that natural images form a much smaller subset of all
possible images. In general, the characterization of the statistical properties of
natural images is done by applying a given transform, typically related to a
component of human vision. Among the most common statistics used in image
processing are the second order statistics, i.e., relations between pairs of pixels.
For instance, this category includes the distributions of image gradients [35,36].

However, a more accurate account of the image structure can be captured
with high-order statistics, i.e., relations between several pixels. In this work, we
consider this general case, but restrict the relations to linear ones of the form

Σf � 0 (2)

where Σ is a rectangular matrix. Eq. (2) implies that all sharp images live
approximately on a subspace. Despite their crude simplicity, these linear con-
straints allow for some flexibility. For example, the case of second-order statistics
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results in rows of Σ with only two nonzero values. Also, by designing Σ one can
selectively apply the constraints only on some of the pixels. Another example is
to choose each row of Σ as a Haar feature applied to some pixels. Notice that
in our approach we do not make any of these choices. Rather, we estimate Σ
directly from natural images.

Natural image statistics, such as gradients, typically exhibit a peaked dis-
tribution. However, performing inference on such distributions results in mini-
mizations of non convex functionals for which we do not have probably optimal
algorithms. Furthermore, we are interested in simplifying the optimization task
as much as possible to gain in computational efficiency. This has led us to enforce
the linear relation above by minimizing the convex cost

‖Σf‖2
2. (3)

As we do not have an analytical expression for Σ that satisfies eq. (2), we need
to learn it directly from the data. We will see later that this step is necessary
only when performing the deconvolution step given the estimated blur. Instead,
when estimating the blur scale our method allows us to use Σ implicitly, i.e.,
without ever recovering it.

2.3 Blur Scale Prior

The statistics of range images can be characterized with an approach similar
to that for optical images [37]. The study in [37] verified the random collage
model, i.e., that a scene is a collection of piecewise constant surfaces. This has
been observed in the distributions of Haar filter responses on the logarithm
of the range data, which showed strong cusps in the isoprobability contours.
Unfortunately, a prior following these distributions faithfully would result in non
convex energy minimization. A practical convex solution to enforce the piecewise
constant model, is to use total variation [38]. Common choices are the isotropic
and anisotropic total variation. In our algorithm we have implemented the latter.
We minimize ‖∇d‖1, i.e., the sum of the absolute value of the components of
the gradient of d.

3 Blur Scale Identification and Image Deblurring

We can combine the image model introduced in sec. 2.1 with the priors in sec. 2.2
and 2.3 and formulate the following energy minimization problem:

d̂, f̂ = argmin
d,f

‖g − Hdf‖2
2 + α‖Σf‖2

2 + β‖∇d‖1, (4)

where the parameters α, β > 0 determine the amount of regularization for tex-
ture and blur scale respectively. Notice that the formulation above is common
to many approaches including, in particular, [5]. Our approach, however, in ad-
dition to using a more accurate blur matrix Hd, considers different priors and
a different depth identification procedure.
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Our next step is to notice that, given d, the proposed cost is simply a least-
squares problem in the unknown sharp texture f . Hence, it is possible to compute
f in closed-form and plug it back in the cost functional. The result is a much
simpler problem to solve. We summarize all the steps in the following Theorem:

Theorem 1. The set of extrema of the minimization (4) coincides with the set
of extrema of the minimization

⎧
⎨

⎩

d̂ = argmin
d

‖H⊥
d g‖2

2 + β‖∇d‖1

f̂ =
(
αΣT Σ + HT

d̂
Hd̂

)−1

HT
d̂

g
(5)

where H⊥
d

.= I − Hd

(
αΣT Σ + HT

d Hd

)−1
HT

d , and I is the identity matrix.

Proof. See Appendix.

Notice that the new formulation requires the definition of a square and symmetric
matrix H⊥

d . This matrix depends on the parameter α and the prior matrix Σ,
both of which are unknown. However, for the purpose of estimating the unknown
blur scale map d, it is possible to bypass the estimation of α and Σ by learning
directly the matrix H⊥

d from data.

3.1 Learning Procedure and Blur Scale Identification

We break down the complexity of solving eq. (5) by using local blur uniformity,
i.e., by assuming that blur is constant within a small region of pixels. Then,
we further simplify the problem by considering only a finite set of L blur sizes
d1, . . . , dL. In practice, we find that both assumptions work well. The local blur
uniformity holds reasonably well except at occluding boundaries, which form a
small subset of the image domain. At occluding boundaries the solution tends to
favor small blur estimates. We also found experimentally that the discretization
is not a limiting factor in our method. The number of blur sizes L can be set
to a value that matches the level of accuracy of the method without reaching a
prohibitive computational load.

Now, by combining the assumptions we find that eq. (5) at one pixel x

d̂(x) = argmin
d(x)

‖H⊥
d (x)g‖2

2 + β‖∇d(x)‖1 (6)

can be approximated by

d̂(x) = argmin
d(x)

‖H⊥
d(x)gx‖2

2 (7)

where gx is a column vector of δ2 pixels extracted from a δ × δ patch centered
at the pixel x of g. Experimentally, we find that the size δ of the patch should
not be smaller than the maximum scale of the coded blur in the captured image
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g. H⊥
d(x) is a δ2 × δ2 matrix that depends on the blur size d(x) ∈ {d1, . . . , dL}.

So we assume that H⊥
d (x,y) � 0 for y such that ‖y − x‖1 > δ/2. Notice that

the term β‖∇d‖1 drops because of the local blur uniformity assumption.
The next step is to explicitly compute H⊥

d(x). Since the blur size d(x) is one of
L values, we only need to compute H⊥

d1
, . . . , H⊥

dL
matrices. As each H⊥

di
depends

on α and the local Σ, we propose to learn each H⊥
di

directly from data. Suppose
that we are given a set of T column vectors gx1 , . . . , gxT extracted from blurry
images of a plane parallel to the camera image plane. The column vectors will
all share the same blur scale di. Hence, we can rewrite the cost functional in
eq. (7) for all x as

‖H⊥
di

Gi‖2
2 (8)

where Gi
.= [gx1 · · · gxT ]. By definition of Gi, ‖H⊥

di
Gi‖2

2 = 0. Hence, we find
that H⊥

di
can be computed via the singular value decomposition of Gi = UiSiV

T
i .

If Ui = [Udi Qdi ] where Qdi corresponds to the singular values of Si that are
zero (or negligible), then H⊥

di
= QdiQ

T
di

. The procedure is then repeated for
each blur scale di with i = 1, . . . , L.

Next, we can use the estimated matrices H⊥
d1

, . . . , H⊥
dL

on a new image g and
optimize with respect to d:

d̂ = argmin
d

∑

x

‖H⊥
d(x)gx‖2

2 + β‖∇d(x)‖1. (9)

The first term represents unitary terms, i.e., terms that are defined on single
pixels; the second term represents binary terms, i.e., terms that are defined on
pairs of pixels. The minimization problem (9) can then be solved efficiently via
graph cuts [39].

Notice that the procedure above can be applied to other surfaces as well, so
that instead of a collection of parallel planes, one can consider, for example, a
collection of quadratic surfaces. Also, notice that there are no restrictions on the
size of a patch. In particular, the same procedure can be applied to a patch of
the size of the input image. In our experiments for depth estimation, however,
we consider only small patches and parallel planes as local surfaces.

3.2 Image Deblurring

In the previous section we have devised a procedure to compute the blur scale
at each pixel d. In this section we assume that d is given and devise a procedure
to compute the image f . In principle, one could use the closed-form solution

f =
(
αΣT Σ + HT

d̂
Hd̂

)−1

HT
d̂

g. (10)

However, notice that computing this equation entails solving a large matrix
inversion, which is not practical for moderate image dimensions. A simpler ap-
proach is to solve the least squares problem (4) in f via an iterative method.
Therefore, we consider solving the problem

f̂ = argmin
f

‖g − Hd̂f‖2
2 + α‖Σf‖2

2 (11)
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by using a least-squares conjugate gradient descent algorithm in f [40]. The
main component for the iteration in f is the gradient ∇Ef of the cost (11) with
respect to f

∇Ef =
(
αΣT Σ + HT

d̂
Hd̂

)
f − HT

d̂
g. (12)

The descent algorithm iterates until ∇Ef � 0. Because of the convexity of the
cost functional with respect to f , the solution is also a global minimum.

To compute Σ we use a database of sharp images F = [f1 · · ·fT ] where
{fi}i=1,...,T are sharp images rearranged as column vectors, and compute the sin-
gular value decomposition F = UF ΣF V T

F . Then, we partition UF = [UF,1 UF,2]
such that UF,2 corresponds to the smallest singular values of ΣF . The high-order
prior is defined as Σ

.= UF,2U
T
F,2, such that we have Σfi ≈ 0. The regularization

parameter α is instead manually tuned. The matrix Hd̂ is computed as described
in Section 2.1.

4 A Geometric Viewpoint on Blur Scale Identification

In the previous sections we have seen that the blur scale at each pixel can be
obtained by minimizing eq. (9). We search among matrices H⊥

d1
, . . . , H⊥

dL
the

one that yields the minimum �2 norm when applied to the vector gx. We show
that this has a geometrical interpretation: Each matrix H⊥

di
defines a subspace

and ‖H⊥
di

gx‖2
2 is the distance of each vector gx from that subspace.

Recall that H⊥
di

= QdiQ
T
di

and that Ui = [Udi Qdi ] is an orthonormal ma-
trix. Then, we obtain that ‖H⊥

di
gx‖2

2 = ‖QdiQ
T
di

gx‖2
2 = ‖QT

di
gx‖2

2 = ‖gx‖2
2 −

‖UT
di

gx‖2
2. If we now divide by the scalar number ‖gx‖2

2, we obtain exactly the
square of the subspace distance [41]

M(g, Udi) =

√
√
√
√1 −

K∑

j=1

(

UT
di,j

g

‖g‖
)2

(13)

where K is the rank of the subspace Udi , Udi = [Udi,1 . . . Udi,K ], and Udi,j ,
j = 1, · · · , K are orthonormal vectors.

The geometrical interpretation brings a fresh look to image blurring and de-
blurring. Consider the image model (1). Let us take the singular value decom-
position of the blur matrix Hd

Hd = UdSdV T
d (14)

where Sd is a diagonal matrix with positive entries, and both Ud and Vd are
orthonormal matrices. Formally, the vector f undergoes a rotation (V T

d ), then
a scaling (Sd), and then again another rotation (Ud). This means that if f
lives in a subspace, the initial subspace is mapped to another rotated subspace,
possibly of smaller dimension (see Fig. 2, middle). Notice that as we change the
blur scale, the rotations and scaling are also changing and may result in yet a
different subspace (see Fig. 2, right).
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f1

f2

f3

(a)

g1

g2
g3

Hd1

(b)

g1

g2

g3

Hd2

(c)

Fig. 2. Coded images subspaces. (a) Image patches on a subspace. (b) Subspace
containing images blurred with Hd1 ; blurring has the effect of rotating and possibly
reducing the dimensionality of the original subspace. (c) Subspace containing images
blurred with Hd2 .

It is important to understand that rotations of the vector f can result in
blurring. To clarify this, consider blurred and sharp images with only 3 pixels
(we cannot visualize the case of more than 3 pixels), i.e., g1 = [g1,x g1,y g1,z]T

and f1 = [f1,x f1,y f1,z]T . Then, we can plot the vectors g1 and f1 as 3D points
(see Fig. 2). Let ‖g1‖ = 1 and ‖f1‖ = 1. Then, we can rotate f1 about the origin
and overlap it exactly on g1. In this case rotation corresponded to blurring. The
opposite is also true. We can rotate the vector g1 onto the vector f1 and thus
perform deblurring. Furthermore, notice that in this simple example the most
blurred images are vectors with identical entries. Such blurred images lie along
the diagonal direction [1 1 1]T . In general, blurry images tend to have entries
with similar values and hence tend to cluster around the diagonal direction.

Our ability to discriminate between different blur scales in a blurry image
boils down to being able to determine the subspaces where the patches of such
blurry image live. If sharp images do not live on a subspace, but uniformly in
the entire space, our only way to distinguish the blur size is that the blurring
Hd scales some dimensions of f to zero and that the scaling varies with blur
size. This case has links to the zero-sheet approach in the Fourier domain [42].
However, if the sharp images live on a subspace, the blurring Hd may preserve
all the directions and blur scale identification is still possible by determining the
rotation of the sharp images subspace. This is the principle that we exploit.
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Input: A single coded image g and a collection of coded images of L planar
scenes.

Output: The blur scale map d of the scene.
Preprocessing (offline)
Pick an image patch size larger than twice the maximum blur scale;
for i = 1, . . . , L do

Compute the singular value decomposition UiSiV
T

i of a collection of image
patches coded with blur scale di ;
Calculate the subspace Udi as the columns of Ui corresponding to nonzero
singular values of Si;

end
Blur identification (online)

Solve d̂ = arg mind∈{d1,··· ,dL}
∑

x M2(gx, Ud) + β

‖gx‖2
2
‖∇d(x)‖1.

Algorithm 1. Blur scale identification from a single coded image via the subspace
distance method.

Notice that the evaluation of the subspace distance M involves the calculation
of the inner product between a patch and a column of Udi . Hence, this calcula-
tion can be done exactly as the convolution of a column of Udi , rearranged as
an image patch, with the whole image g. We can conclude that the algorithm
requires computing a set of L × K convolutions with the coded image, which is
a stable operation of polynomial computational complexity. As we have shown
that minimizing eq. (13) is equivalent to minimizing ‖H⊥

di
gx‖2

2 up to a scalar
value, we summarize the blur scale identification procedure in Algorithm 1.

4.1 Coded Aperture Selection

In this section we discuss how to obtain an optimal pattern for the purpose of
image deblurring. As pointed out in [19] we identify two main challenges: The
first one is that accurate deblurring requires accurate identification of the blur
scale; the second one is that accurate deblurring requires little texture loss due
to blurring. A first step towards addressing these challenges is to define a metric
for blur scale identification and a metric for texture loss. Our metric for blur
scale identification can be defined directly from section 4. Indeed, the ability to
determine which subspace a coded image patch belongs to can be measured via
the distance between the subspaces associated to each blur scale

M̄(Ud1 , Ud2) =
√

K −
∑

i,j

(
UT

d1,iUd2,j

)2

. (15)

Clearly, the wider apart all the subspaces are, and the less prone to noise the
subspace association is. We find that a good visual summary of the “spacing”
between all the subspaces is a (symmetric) matrix with distances between any
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d

d

(Ud10, Ud20) = √K

(Ud25, Ud25) = 0

M̄

M̄

d20 d25

d10

d25

(a) Ideal distance matrix

d

d

d20 d25

d10

d25

(b) Circular aperture

Fig. 3. Distance matrix computation. The top-left corner of each matrix is the
distance between subspaces corresponding to small blur scales, and, vice versa, the
bottom-right corner is the distance between subspaces corresponding to large blur
scales. Notice that large subspace distances are bright and small subspace distances are
dark. The maximum distance (

√
K) is achievable when two subspaces are orthogonal

to each other.

two subspaces. We compute such matrix for a conventional camera and show the
results in Fig. 3, together with the ideal distance matrix.

In each distance matrix, subspaces associated to blur scales ranging from
the smallest to the largest ones are arranged along the rows from left to right
and along the columns from top to bottom. Along the diagonal the distance is
necessarily 0 as we compare identical subspaces. Also, by definition the metric
cannot exceed

√
K, where K is the minimum rank among the subspaces. In

Fig. 5 we report the distance matrices computed for each of the apertures we
consider in this work (see Fig. 4).

Notice that the subspace distance map for a conventional camera (Fig. 3(b)) is
overall darker than the matrices for coded aperture cameras (Fig. 5). This shows
the poor blur scale identifiability of the circular aperture and the improvement
that can be achieved when using a more elaborate pattern.

The rank K can be used to address the second challenge, i.e., the definition
of a metric for texture loss. So far we have seen that blurring can be interpreted
as a combination of rotations and scaling. Deblurring can then be interpreted
as a combination of rotations and scaling in the opposite direction. However,
when blurring scales some directions to 0, part of the texture content has been
lost. This suggests that a simple measure for texture loss is the dimension of the
coded subspace: The higher the dimension and the more texture content we can
restore. As the (coded images) subspace dimension is K, we can immediately
conclude that the subspace distance matrix that most closely resembles the ideal
distance matrix (see Fig. 3(a)) is the one that simultaneously achieves the best
depth identification and the least texture loss. Finally, we propose to use the
average L1 fitting of any distance matrix to the ideal distance matrix scaled of√

K, i.e., |√K(11T − I) − M̄|. The fitting yields the values in Table 1. We can
also see visually in Fig. 5 that mask 4(b) and mask 4(d) are the coded apertures
that we can expect to achieve the best results in texture deblurring.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Coded aperture patterns and PSFs. All the aperture patterns we consider
in this work (top row) and their calibrated PSFs for two different blur scales (second
and bottom row). (a) and (b) aperture masks used in both [13] and [43]; (c) annular
mask used in [17]; (d) pattern proposed by [5]; (e) pattern proposed by [4]; (f) and (g)
aperture masks used in [15]; (h) MURA pattern used in [10].

(a) Mask 4(a) (b) Mask 4(b) (c) Mask 4(c) (d) Mask 4(d)

(e) Mask 4(e) (f) Mask 4(f) (g) Mask 4(g) (h) Mask 4(h)

Fig. 5. Subspace distances for the eight masks in Fig. 4. Notice that the sub-
space rank K determines the maximum distance achievable, and therefore, coded aper-
tures with overall darker subspace distance maps have poor blur scale identifiability
(i.e., sensitive to noise).

The quest for the optimal mask is, however, still an open problem. Even if
we look for the optimal mask via brute-force search, a single aperture pattern
requires the evaluation of eq. (15) and the computation of all the subspaces as-
sociated to each blur scale. In particular, the latter process requires about 15
minutes on a QuadCore 2.8GHz with Matlab 7, which makes the evaluation of
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Table 1. L1 fitting of any distance matrix to the ideal distance matrix scaled of
√

K

Masks
4(a) 4(b) 4(c) 4(d) 4(e) 4(f) 4(g) 4(h)

L1 fitting 8.24 6.62 8.21 5.63 8.37 16.96 8.17 16.13

a large number of masks unfeasible. Devising a fast procedure to determine the
optimal mask will be subject of future work.

5 Experiments

In this section we demonstrate the effectiveness of our approach on both syn-
thetic and real data. We show that the proposed algorithm performs better than
previous methods on different coded apertures and different datasets. We also
show that the masks proposed in the literature do not always yield the best
performance.

5.1 Performance Comparison

Before proceeding with tests on real images, we perform extensive simulations
to compare accuracy and robustness of our algorithm with 4 competing methods
including the current state-of-the-art approach. The methods are all based on the
hypothesis plane deconvolution used by [5] as explained in the Introduction. The
main difference among the competing methods is that the deconvolution step is
performed either using the Lucy-Richardson method [44], or regularized filter-
ing (i.e., with image gradient smoothness), or Wiener filtering [45], or Levin’s
procedure [5]. We use the 8 masks shown in Fig. 4. All the patterns have been
proposed and used by other researchers [4,5,10,13,15,17]. For each mask and a
given blur scale map d, we simulate a coded image by using eq. (1), where f is an
image of 4, 875× 125 pixels with either random texture or a set of patches from
natural images (examples of these patches are shown in Fig. 6). Then, for each
algorithm we obtain a blur scale map estimate d̂ and compute its discrepancy
with the ground-truth. The ground-truth blur scale map d that we use is shown
in pseudo-colors at the top-left of both Fig. 7 and Fig. 8 and it represents a
stair composed of 39 steps at different distances (and thus different blur scales)
from the camera. We assume that the focal plane is set to be between the cam-
era and the first object of interest in the scene. With this setting, the bottom
part of the blur scale map (small blur sizes) corresponds to points close to the
camera, and the top part (large blur sizes) to points far from the camera. Each
step of the stair is a square of 125 × 125 pixels, we have squeezed the actual
illustration along the vertical axis to fit in the paper. The size of the blur ranges
from 7 to 30 pixels. Notice that in measuring the errors we consider all pixels,
including those at the blur scale discontinuities, given by the difference of blur
scale between neighboring steps. In Fig. 7 we show, for each mask in Fig. 4,
the results of the proposed method (right) together with the results obtained by
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image noise level σ= 0

image noise level σ= 0.002

Fig. 6. Real texture. Some of the patches extracted from real images that have been
used in our tests. The same patches are shown with no noise (top part) and when a
Gaussian noise is added to them (bottom part).

the current state-of-the-art algorithm (left) on random texture. The same proce-
dure, but with texture from natural images, is reported in Fig. 8. For the three
best performing masks (mask 4(a), mask 4(b), and mask 4(d)), we report the
results with the same graphical layout in Fig. 9, in order to better appreciate the
improvement of our method over previous ones, especially for large blur scales.
Every plot shows, for each of the 39 steps we consider, the mean and 3 times the
standard deviation of the estimated blur scale values (ordinate axis) against the
true blur scale level (abscissa axis). The ideal estimate is the diagonal line where
each estimated level corresponds to the correct true blur scale level. If there is
no bias in the estimation of the blur scale map, the ideal estimate should lie
between 3 times the standard deviation about the mean with probability close
to 1. Our method performs consistently well with all the masks and at differ-
ent blur scale levels. In particular, the best performances are observed for mask
4b (Fig. 9(b)) and d (Fig. 9(c)), while the performance of competing methods
rapidly degenerates with increasing pattern scales. This demonstrates that our
method has potential for restoring objects at a wider range of blur scales and
with higher accuracy than in previous algorithms.

A quantitative comparison among all the methods and masks is given in Ta-
ble 2 and Table 4 (for random texture) and in Table 3 and Table 5 (for real
texture). In each table, the left half reports the average error of the blur scale
estimate (measured as ||d − d̂||1, where d and d̂ are the ground-truth and the
estimated blur scale map respectively); the right half reports the error on the

reconstructed sharp image f̂ , measured as
√

||f − f̂ ||22 + ||∇f −∇f̂ ||22, where
f is the ground-truth image. The gradient term is added to improve sensitivity
to artifacts in the reconstruction. As one can see from Tables 2 - 5, several levels
of noise have been considered in the performance comparison: σ = 0 (Table 2 and
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Far

Close

(a) Mask 4(a) (b) Mask 4(b) (c) Mask 4(c) (d) Mask 4(d)GT

(e) Mask 4(e) (f) Mask 4(f) (g) Mask 4(g) (h) Mask 4(h)

Fig. 7. Blur scale estimation - random texture. GT: Ground-truth blur scale
map. (a-h) Estimated blur scale maps for all the eight masks we consider in the paper.
For each mask, the figure reports the blur scale map estimated with both Levin et al.’s
method (left) and our method (right).

Table 3), σ = 0.001, σ = 0.002, and σ = 0.005 (Table 4 and Table 5). The noise
level is however adjusted to accommodate the difference in overall incoming light
between the masks, i.e., if the mask i has an incoming light of li

1, the noise level
for that mask is given by:

σi =
1
li
∗ σ. (16)

Thus, masks such as 4(f), 4(g) and 4(h) are subject to lower noise levels than
masks such as 4(a) and 4(b). Our method produces more consistent and accurate
blur scale maps than previous methods for both random texture and natural
images, and across the 8 masks that it has been tested with.

5.2 Results on Real Data

We now apply the proposed blur scale estimation algorithm to coded aperture
images captured by inserting the selected mask into a Canon 50mm f/1.4 lens
mounted on a Canon EOS-5D DSLR as described in [5,15]. Based on the analysis
1 The value of li represents the quantity of lens aperture that is open: when the lens

aperture is totally open, li = 1; instead, when the mask completely blocks the light,
li = 0.
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Far

Close

(a) Mask 4(a) (b) Mask 4(b) (c) Mask 4(c) (d) Mask 4(d)GT

(e) Mask 4(e) (f) Mask 4(f) (g) Mask 4(g) (h) Mask 4(h)

Fig. 8. Blur scale estimation - real texture. GT: Ground-truth blur scale map.
(a-h) Estimated blur scale maps for all the eight masks we consider in the paper. For
each mask, the figure reports the blur scale map estimated with both Levin et al.’s
method (left) and our method (right).

in section 4.1 we choose mask 4(b) and mask 4(b). Each of the 4 holes in the
first mask is 3.5mm large, which corresponds to the same overall section of a
conventional (circular) aperture with diameter 7.9mm (f/6.3 in a 50mm lens).
All indoor images have been captured by setting the shutter speed to 30ms (ISO
320-500) while outdoors the exposure has been set to 2ms or lower (ISO 100).

Firstly, we need to collect (or synthesize) a sequence of L coded images, where
L is the number of blur scale levels we want to distinguish. There are two tech-
niques to acquire these coded images: (1) If the aim is just to estimate the depth
map (or blur scale map), one can capture real coded images of a planar surface
with sharp natural texture (e.g., a newspaper) at different blur scale levels. (2)
If the goal is to reconstruct both depth map and all-in-focus image, one has to
capture the PSF of the camera at each depth level, by projecting a grid of bright
dots on a plane and using a long exposure; then, coded images are simulated by
applying the measured PSFs on sharp natural images collected from the web.
In the experiments presented in this paper, we use the latter approach since we
estimate both the blur scale map and the all-in-focus image. The PSFs have
been captured on a plane at 40 different depths between 60cm and 140cm from
the camera. The focal plane of the camera was set at 150cm.

In the first experiments, we show the advantage of our approach over Levin et
al.’s method on a scene with blur sizes similar to the ones used in the performance
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(a) Mask 4(a)
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(b) Mask 4(b)
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(c) Mask 4(d)

Fig. 9. Comparison of the estimated blur scale levels obtained from the 3
best methods using both random (top) and real (bottom) texture. Each graph
reports the performance of the algorithms with (a) masks 4(a), (b) masks 4(b), and (c)
mask 4(d). Both mean and standard deviation (in the graphs, we show three times the
computed standard deviation) of the estimated blur scale are shown in an errorbar with
the algorithms performances (solid lines) over the ideal characteristic curve (diagonal
dashed line) for 39 blur sizes. Notice how the performance dramatically changes based
on the nature of texture (top row vs bottom row). Moreover, in the case of real images
the standard deviation of the estimates obtained with our method are more uniform for
mask 4(b) than for mask 4(d). In the case of mask 4(d) the performance is reasonably
accurate only with small blur scales.

test. The same dataset has been captured by using mask 4(b) (see Fig. 11) and
mask 4(d) (see Fig. 12). The size of the blur, especially at the background, is
very large; This can be appreciated in Fig. 10(a), which shows the same scenario
captured with the same camera setting, but without mask on the lens. For a
fair comparison, we do not use any regularization or user intervention to the
estimated blur scale maps.

As already seen in the Section 5.1 (especially in Fig. 9), Levin et al.’s method
yields an accurate blur scale estimate with mask 4(d) when the size of the blur is
small, but it fails with large amounts of blur. The proposed approach overcomes
this limitation and yields to a deblurred image that in both cases, Fig. 11(e)
and Fig. 12(e), is closer to the ground-truth (Fig. 10(b)). Notice also that our
method gives an accurate reconstruction of the blur scale, even without using
regularization (β = 0 in eq. (9)). Some artefacts are still present in the recon-
structed all-in-focus images. These are mainly due to the very large size of the
blur and to the raw blur-scale map: When adding regularization to the blur-scale
map (β > 0), the deblurring algorithm yields to better results, as one can see in
the next examples.



142 M. Martinello and P. Favaro

Table 2. Random texture. Performance (mean error) of 5 algorithms in blur scale
estimation and image deblurring for the apertures in Fig. 4, assuming there is not
noise.

Masks - (image noise level σ = 0)
Methods Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h

Lucy-Richardson 16.8 14.4 17.2 2.9 17.0 18.1 17.8 15.4 0.22 0.22 0.21 0.22 0.22 0.22 0.22 0.21
Regularized filtering 18.4 17.2 18.6 6.8 16.7 12.3 18.8 13.4 0.30 0.32 0.27 0.32 0.25 0.42 0.23 0.25
Wiener filtering 8.8 13.8 14.4 16.6 16.3 15.3 14.1 15.3 0.23 0.29 0.29 0.33 0.31 0.32 0.27 0.30
Levin et al.[5] 16.7 13.7 16.7 1.4 16.6 16.8 17.6 13.3 0.22 0.21 0.22 0.21 0.21 0.22 0.22 0.21
Our method 1.2 0.9 3.7 0.9 4.2 10.3 3.8 9.6 0.20 0.20 0.21 0.21 0.21 0.22 0.21 0.22

Table 3. Real texture. Performance (mean error) of 5 algorithms in blur scale esti-
mation and image deblurring for the apertures in Fig. 4, assuming there is not noise.

Masks - (image noise level σ = 0)
Methods Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 17.0 16.4 18.4 15.6 17.9 18.5 18.0 18.3 0.22 0.20 0.22 0.18 0.20 0.20 0.20 0.20
Regularized filtering 18.5 16.8 18.2 8.6 16.8 11.4 17.9 15.4 0.51 0.49 0.52 1.08 0.28 0.67 0.28 0.40
Wiener filtering 17.1 16.4 18.2 14.4 17.0 18.0 17.5 17.6 0.25 0.22 0.26 0.21 0.21 0.24 0.23 0.21
Levin et al.[5] 16.3 14.8 17.9 9.9 17.0 18.2 17.6 17.0 0.25 0.21 0.23 0.19 0.20 0.21 0.21 0.20
Our method 3.3 3.3 6.8 3.3 6.1 12.6 5.9 11.7 0.18 0.16 0.21 0.16 0.17 0.21 0.19 0.21

In Fig. 13 we have the same indoor scenario, but now the items are slightly
closer to the focal plane of the camera; then the maximum amount of blur is re-
duced. Although the background is still very blur in the coded image (Fig. 13(a)),
our accurate blur-scale estimation yields to a deblurred image (Fig. 13(b)), where
the text of the magazine becomes readable. Since the reconstructed blur-scale
map corresponds to the depth map (relative depth) of the scene, we can use it
together with the all-in-focus image to generate a 3D image2. This image, when
watched with red-cyan glasses, allows one to perceive the depth information
extracted with our approach.

All the regularized blur-scale maps in this work are estimated from eq. (9)
by setting β = 0.5; the raw maps, instead, are obtained without regularization
term (β = 0).

We have tested our approach on different outdoor scenes: Fig. 15 and Fig. 14.
In these scenarios we apply the subspaces we have learned within 150cm from the
camera to a very large range of depths. Several challenges are present in these
scenes, such as occlusions, shadows, and lack of texture. Our method demon-
strates robustness to all of them. Notice again that the raw blur-scale maps
shown in Fig. 15(c) and Fig. 14(c) are already very close to the maps that in-
clude regularization (Fig. 15(d) and Fig. 14(d) respectively). For each dataset, a

2 In this work, a 3D image corresponds to an image captured with a stereo camera,
where one lens has a red filter and the second lens has a cyan filter. When one
watches this type of images with red-cyan glasses, each eye will see only one view:
The shift between the two views gives the perception of depth.



Single Image Blind Deconvolution with Higher-Order Texture Statistics 143

Table 4. Random texture. Performance (mean error) of 5 algorithms in blur scale
estimation and image deblurring for the apertures in Fig. 4, under different levels of
noise.

Masks - (image noise level σ = 0.001)
Methods Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 18.5 17.1 18.2 11.7 16.6 16.2 18.3 17.3 0.39 0.36 0.27 0.28 0.35 0.29 0.26 0.27
Regularized filtering 19.0 17.5 19.0 14.3 16.8 18.3 18.9 15.6 0.88 0.96 0.61 1.03 0.93 0.61 0.61 0.91
Wiener filtering 15.7 16.7 16.8 17.5 17.2 17.6 16.8 17.0 0.35 0.37 0.36 0.39 0.38 0.38 0.35 0.38
Levin et al. 18.4 16.3 18.1 11.0 16.7 17.3 18.3 17.5 0.32 0.31 0.26 0.28 0.30 0.28 0.25 0.26
Our method 9.6 8.7 12.7 10.1 12.5 13.2 12.9 13.9 0.20 0.21 0.22 0.22 0.21 0.23 0.21 0.23

Methods Masks - (image noise level σ = 0.002)
Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 18.5 17.1 18.2 12.1 16.6 16.3 18.3 17.3 0.49 0.46 0.31 0.34 0.44 0.33 0.30 0.32
Regularized filtering 18.9 17.4 18.8 12.7 16.7 16.9 18.9 16.9 0.76 0.69 0.47 0.50 0.67 0.46 0.49 0.46
Wiener filtering 15.5 16.4 16.7 17.3 17.1 17.5 16.8 17.0 0.35 0.37 0.37 0.39 0.38 0.39 0.35 0.38
Levin et al. 18.5 16.9 18.0 12.1 16.7 17.6 18.4 17.7 0.39 0.38 0.29 0.34 0.37 0.31 0.28 0.29
Our method 11.3 11.1 13.2 11.3 12.6 13.5 12.8 14.0 0.22 0.22 0.23 0.23 0.22 0.23 0.23 0.24

Methods Masks - (image noise level σ = 0.005)
Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 18.4 17.0 18.2 12.6 16.5 16.6 18.4 17.3 0.66 0.62 0.41 0.47 0.61 0.40 0.40 0.43
Regularized filtering 18.9 17.4 18.8 13.1 16.6 17.1 18.8 16.9 1.17 1.04 0.69 0.75 1.03 0.59 0.73 0.68
Wiener filtering 15.4 16.2 16.5 17.3 17.2 17.3 16.7 17.0 0.35 0.37 0.37 0.39 0.38 0.39 0.35 0.38
Levin et al. 18.5 16.9 18.0 12.5 16.7 17.7 18.4 17.7 0.55 0.54 0.37 0.45 0.51 0.37 0.36 0.39
Our method 12.8 12.6 13.4 12.0 12.8 13.5 13.5 14.0 0.25 0.25 0.26 0.25 0.25 0.26 0.26 0.27

Table 5. Real texture. Performance (mean error) of 5 algorithms in blur scale es-
timation and image deblurring for the apertures in Fig. 4, under different levels of
noise.

Methods Masks - (image noise level σ = 0.001)
Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 18.5 17.2 18.3 13.7 16.8 17.8 18.4 18.1 0.38 0.35 0.26 0.24 0.32 0.23 0.24 0.25
Regularized filtering 19.0 17.5 19.0 14.0 16.8 17.6 19.0 15.6 0.96 1.05 0.66 1.39 0.94 0.68 0.64 1.02
Wiener filtering 13.8 14.5 14.1 14.6 15.2 14.4 14.8 14.5 0.21 0.23 0.22 0.22 0.23 0.21 0.21 0.23
Levin et al.[5] 18.4 16.8 18.1 10.6 16.7 17.0 18.2 17.8 0.34 0.33 0.27 0.30 0.30 0.27 0.24 0.25
Our method 8.7 7.8 11.8 7.7 11.9 13.5 11.5 13.8 0.21 0.18 0.22 0.17 0.19 0.20 0.20 0.20

Methods Masks - (image noise level σ = 0.002)
Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 18.5 17.2 18.3 13.2 16.7 17.5 18.4 17.9 0.47 0.44 0.30 0.29 0.40 0.26 0.27 0.30
Regularized filtering 19.0 17.5 19.0 14.1 16.8 18.1 19.0 15.7 1.26 1.38 0.87 1.72 1.30 0.74 0.87 1.34
Wiener filtering 14.7 15.8 15.2 15.8 16.0 15.1 15.0 15.7 0.23 0.25 0.24 0.24 0.25 0.24 0.22 0.25
Levin et al. 18.4 16.8 18.1 11.1 16.7 17.1 18.3 17.7 0.41 0.40 0.30 0.37 0.37 0.30 0.28 0.29
Our method 10.6 9.5 12.1 9.0 12.3 13.5 12.1 14.1 0.24 0.19 0.23 0.17 0.19 0.20 0.21 0.20

Methods Masks - (image noise level σ = 0.005)
Blur scale estimation Image deblurring

a b c d e f g h a b c d e f g h
Lucy-Richardson 18.3 17.1 18.2 12.9 16.6 17.4 18.4 17.9 0.61 0.58 0.39 0.40 0.55 0.34 0.37 0.40
Regularized filtering 19.0 17.5 19.0 14.1 16.8 18.1 18.9 15.7 1.89 2.07 1.31 2.38 2.03 0.88 1.31 2.02
Wiener filtering 15.6 16.5 16.1 16.8 16.7 16.5 16.0 16.7 0.26 0.27 0.26 0.27 0.27 0.26 0.24 0.26
Levin et al. 18.5 16.9 18.1 11.3 16.7 17.4 18.4 17.7 0.56 0.55 0.38 0.49 0.51 0.37 0.35 0.39
Our method 12.2 11.8 13.3 10.8 12.7 13.7 13.4 13.7 0.26 0.22 0.24 0.19 0.21 0.22 0.22 0.25
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(a) Conventional aperture (b) Ground-truth (pinhole camera)

Fig. 10. (a) Picture taken with the conventional camera without placing the mask on
the lens. (b)Image captured by simulating a pinhole camera (f/22.0), which can be
used as ground-truth for the image texture.

3D image (Fig. 14(e) and Fig. 15(e)) has been generated by using just the out-
put of our method: the deblurred images (b) and the blur-scale maps (d). The
ground-truth images have been taken by simulating a pinhole camera (f/22.0).

5.3 Computational Cost

We downsample 4 times the input images from an original resolution of 12,8
megapixel (4, 368 × 2, 912) and use sub-pixel accuracy, in order to keep the
algorithm efficient. We have seen from experiments on real data that the raw
blur-scale map is already very close to the regularized map. This means that we
can obtain a reasonable blur scale map very efficiently: When β = 0 the value of
the blur scale at one pixel is independent of the other pixels and the calculations
can be carried out in parallel. Since the algorithm takes about 5ms for processing
40 blur scale levels at each pixel, it is suitable for real-time applications. We have
run the algorithm on a QuadCore 2.8GHz with 16GB memory. The code has been
written mainly in Matlab 7. The deblurring procedure, instead, takes about 100s
to process the whole image for 40 blur scale levels.

6 Conclusions

We have presented a novel method to recover the all-in-focus image from a
single blurred image captured with a coded aperture camera. The method is
split in two steps: A subspace-based blur scale identification approach and an
image deblurring algorithm based on conjugate gradient descent. The method is
simple, general, and computationally efficient. We have compared our method to
existing algorithms in the literature and showed that we achieve state of the art
performance in blur scale identification and image deblurring with both synthetic
and real data while retaining polynomial time complexity.
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(a) Input image (b) Raw blur-scale map (c) Deblurred image

(d) Raw blur-scale map (e) Deblurred image

Fig. 11. Comparison on real data - mask 4(b). (a) Input image captured by using
mask 4(b). (b-c) Blur-scale map and all-in-focus image reconstructed with Levins et
al.’s method [5]; (d-e) Results obtained from our method.

(a) Input image (b) Raw blur-scale map (c) Deblurred image

(d) Raw blur-scale map (e) Deblurred image

Fig. 12. Comparison on real data - mask 4(d). (a) Input image captured by using
mask 4(d). (b-c) Blur-scale map and all-in-focus image reconstructed with Levins et
al.’s method [5]; (d-e) Results obtained from our method.
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(a) Input (b) All-in-focus image

(c) Blur-scale map (d) 3D image

Fig. 13. Close-range indoor scene [exposure time: 1/30s]. (a) coded image cap-
tured with mask 4(b); (b) estimated all-in-focus image; (c) estimated blur-scale map;
(d) 3D image (to be watched with red-cyan glasses).
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(a) Input image (b) Deblurred image

(c) Raw blur-size map (d) Estimated blur-size map

(e) 3D image (f) Ground-truth image

Fig. 14. Long-range outdoor scene [exposure time: 1/200s]. (a) coded image
captured with mask 4(b); (b) estimated all-in-focus image; (c) raw blur-scale map
(without regularization); (d) regularized blur-scale map; (e) 3D image (to be watched
with red-cyan glasses); (f) ground-truth image.



148 M. Martinello and P. Favaro

(a) Input image (b) Deblurred image

(c) Raw blur-size map (d) Estimated blur-size map

(e) 3D image (f) Ground-truth image

Fig. 15. Mid-range outdoor scene [exposure time: 1/200s]. (a) coded image
captured with mask 4(b); (b) estimated all-in-focus image; (c) raw blur-scale map
(without regularization); (d) regularized blur-scale map; (e) 3D image (to be watched
with red-cyan glasses); (f) ground-truth image.
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Appendix

Proof of Theorem 1
To prove the theorem we rewrite the least squares problem in f as

‖Hdf − g‖2
2 + α‖Σf‖2

2 =
∥
∥
∥
∥

[
Hd√
αΣ

]

f −
[

g
0

]∥
∥
∥
∥

2

2

= ‖H̄df − ḡ‖2
2 (17)

where we have defined H̄d =
[
HT

d

√
αΣT

]T and ḡ =
[
gT 0T

]T . Then, we can
define the solution in f as f̂ =

(
H̄T

d H̄d

)−1
H̄T

d ḡ. By substituting the solution
for f back in the least squares problem, we obtain

‖Hdf − g‖2
2 + α‖Σf‖2

2 = ‖H̄⊥
d ḡ‖2

2 (18)

where H̄⊥
d = I − H̄d

(
H̄T

d H̄d

)−1
H̄T

d .
We have shown that we can use H̄⊥

d rather than H⊥
d and ḡ rather than g

in the minimization problem (5) without affecting the solution. The rest of the
proof then assumes that the energy in eq. (5) is based on ‖H̄⊥

d ḡ‖2
2. The step

above is necessary to fully exploit the properties of H̄⊥
d . H̄⊥

d is a symmetric
matrix (i.e, (H̄⊥

d )T = H̄⊥
d ) and is also idempotent (i.e, H̄⊥

d = (H̄⊥
d )2). By

applying the above properties we can write the argument of the first term of the
cost in eq. (5) as

ḡT H̄⊥
d ḡ = ḡT (H̄⊥

d )T H̄⊥
d ḡ = ||H̄⊥

d ḡ||2 (19)

Moreover, from the definition of H̄⊥
d we know that

H̄⊥
d

.= I − H̄d(H̄T
d H̄d)−1H̄T

d

= I − H̄dH̄†
d (20)

Thus, the necessary conditions for an extremum of eq. (5) become
⎧
⎨

⎩

(
ḡ − H̄dH̄†

dḡ
)T (

∇H̄dH̄†
d + H̄d∇H̄†

d

)
ḡ = ∇ · ∇d

‖∇d‖1

f = H̄†
dḡ.

(21)

where ∇H̄d is the gradient of H̄d with respect to d, and the right hand side
of the first equation is the gradient of ‖∇d‖1 with respect to d. Similarly, the
necessary conditions for eq. (4) are

⎧
⎨

⎩

(
ḡ − H̄df

)T ∇H̄df = ∇ · ∇d

‖∇d‖1

H̄T
d

(
ḡ − H̄df

)
= 0.

(22)

It is now immediate to apply the same derivation as in [46] and demonstrate
that the left hand side of the first equation in both system (22) and system (21)
are identical. Since the right hand sides are also identical, this implies that the
first equations have the same solutions. The second equations in (22) and (21)
are instead identical by construction.
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