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ABSTRACT
In this paper we present a space-varying deblurring algorithm
from a single defocused and motion-blurred image obtained
with a fragmented aperture. We show that, for the same over-
all incoming light, a fragmented aperture leads to better mo-
tion and defocus deblurring than a (compact) conventional
circular aperture. We demonstrate that not only fragmented
apertures preserve more spectrum of an image of the scene
than traditional circular apertures, but they also allow a bet-
ter identification of blur scale. Our algorithm estimates both
motion blur magnitude and direction as well as defocus blur
scale at each pixel. The estimation of the blur parameters
is addressed by using local projections on subspaces and L1

regularization, while deblurring is posed as a variational min-
imization problem and solved via linearization of the Euler-
Lagrange equations. The technique produces convincing re-
sults on real scenario.

Index Terms— motion-blur, defocus, single image,
space-varying deblurring, coded aperture photography.

1. INTRODUCTION
With the increasing resolution of the camera sensors, a small
motion of either an object in the scene (e.g., the bus in Fig.1)
or the camera is enough to loose important details when cap-
turing an image. Moreover, when one brings an object into
focus, the texture placed at other locations in the scene may
result out-of-focus (e.g., see the shops in the background in
Fig.1). Hence, to recover the sharp texture from degraded im-
ages, one has to remove both defocus and motion-blur.

This paper presents two main contributions: 1) We show
experimentally that defocus and motion-blur identification
benefits from fragmenting the lens aperture; 2) We introduce
for the first time an efficient technique to identify and perform
space-varying defocus and motion deblurring from a single
image.

1.1. Prior Work
Defocus Deblurring from Single Image. It has been re-
cently demonstrated that a mask in the lens aperture can im-
prove the defocus deblurring from a single image [1, 2, 3, 4].
Optimal patterns are obtained by imposing that the blur ker-
nel be wide band and by incorporating natural image statis-
tics [2, 3]. The results are quite impressive as not only one
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Fig. 1. Challenging scene. Example of a blurred image cap-
tured with a conventional camera, where the degradation is
due to both defocus (background) and motion (bus).

can restore a sharp image, but also a depth map can be esti-
mated. These methods deal with the space-varying nature of
real images, but do not investigate how motion blur affects the
deblurring.

Motion Deblurring from Single Image. Motion and
defocus deblurring from a single image when the scene is ap-
proximately a fronto-parallel plane has been long known in
the field of signal processing as blind deconvolution [5, 6].
Recently, it has received renewed attention due to progress
achieved by using natural image priors [7, 8, 9, 10]. For this
choice of priors, currently [11] achieves the best results and
can deal with very large (although uniform) blurs. Other re-
cent methods deal with non-uniform motion-blur, but they as-
sume that the scene is rigid and the motion is due to the cam-
era shake [12]. An analysis of blind deconvolution algorithms
in [13] finds that recovering blur first and then performing de-
blurring is a key ingredient. It also shows that the shift invari-
ance assumption in all existing algorithms is often violated in
real imagery. Our two-step approach for space-varying de-
blurring is somewhat inspired by these conclusions.

Alternative approaches to motion-deblurring are shown in
[14], where a prototype camera moves with a parabolic mo-
tion during the exposure, and in [3, 15] where exposure is
coded to facilitate the inversion of the motion-blur kernel.
These techniques, however, have not been tested yet on im-
ages affected by space-varying defocus. Furthermore, as cod-
ing the exposure results in limiting the amount of incoming
light, a longer exposure is needed.

2. MOTION & DEFOCUS DEBLURRING
When imaging moving objects, the image undergoes a degra-
dation that is made of both defocus, which depends on the
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aperture and the location d of the object in space, and motion
blur, which depends on the object motion m. Since objects
in the scene may be placed at different locations and/or mov-
ing with different motions, the degradation (or blur) may be
different at each pixel in the image. Hence, we use a general
linear model: We indicate with g the observed blurred image
and with ki the kernel (or blur) of the i-th pixel in the sharp
image f ; if both ki and f are ordered as two column vectors,
the model can be written as a product of matrices

g = Kd,mf (1)
with the matrix Kd,m = [k1 k2 . . . kN ] ∈ RN×N , where N
is the number of pixels of the image. Each blurring kernel ki

can be rearranged as a 2D matrix k�
i , which can be thought

as the result of a convolution between two simpler kernels
k�

i = k�
di
∗ k�

mi
(2)

where k�
di

contains only the degradation due to defocus and
k�

mi
corresponds to the motion blur.

The problem of deblurring a single image can be posed as

f̃ , d̃, m̃ = argmin
f ,d,m

�
||g − ĝ||2 + Ereg(f ,d,m)

�
(3)

where we require the simulated blurred image ĝ = Kd,mf
to match in a least square sense the measured image g, and
we impose in the regularization term Ereg(f ,d,m) that all
unknowns be piecewise constant. This minimization problem
is a formidable challenge as we are given a single image g and
we are looking for a 4-fold increase in number of parameters.
Hence, to reduce the complexity of the problem we quantize
the space of the scale and motion parameters so that only a
finite set of possible values is allowed. Moreover, we break
down the problem in two separate steps where we first iden-
tify the blur parameters at each pixel Kd,m (see Sec. 3) and
then estimate the sharp image f (see Sec. 5).

Notice that the above model works with any type of lens
aperture. Therefore, we look for an aperture that allows a
good reconstruction of both f and blur. We find that solving
the above problem for conventional compact aperture yields
poor results (see, for example, Table 1 in Sec. 6) due to a poor
identifiability of the blur parameters and a stronger degrada-
tion of the image f (Sec.4). Our analysis shows that if the
aperture is instead fragmented, both the parameter identifica-
tion and the image degradation improve not only with still
images, as already shown in [2, 7, 10], but also with motion-
blur.

3. MOTION & DEPTH ESTIMATION
For now, assume that an aperture is given. As we consider a
local patch of the input image and use constant velocity mo-
tion and constant defocus assumption, we can look for a blur
identification method that does not require the simultaneous
estimation of the sharp image f . A successful method in blind
deconvolution is the projection onto subspaces [16]. The key
idea is that instead of solving problem (3) one minimizes

d̃, m̃ = argmin
d,m

�
||K⊥

d,m g||2 + β||∇d|| + γ||∇m||
�

(4)

By solving this problem via subspace projections one can
show that Gaussian priors on the unknown image f are im-
plicitly used. This however, is not a severe limitation, as also
noticed by [13]. For a given defocus scale di and motion mi,
the local kernel K⊥

di,mi
is a collection of orthonormal vectors.

The energy term corresponds to the projection of a patch of
g to a subspace. The local kernel can be computed directly
from the analytic forms of the blur kernels or learned from
synthetic and real data as was shown in [16]. In our imple-
mentation we learn the local kernels by using real sharp im-
ages of size δ×δ synthetically motion-blurred and defocused.
The procedure is rather straightforward, as one simply needs
to: (1) generate a training set Gd,m = [g1 g2 . . . gM ]T ∈
Rδ2×M of images blurred with a specific parameter choice,
(2) perform its singular value decomposition Gd,m = USV T

where U = [U1 U2 . . . Uδ2 ] ∈ Rδ2×δ2
, V are orthonormal

matrices, and S is diagonal with the singular values of Gd,m,
(3) define K⊥

d,m = Ut, with t = 1, . . . , T < δ2.
These local kernels can then be used to perform the dis-

crete minimization in eq. (4) for all possible parameters via
graph cuts [17]. Notice that the second and third terms are
standard total variation penalization terms involving pairwise
interactions between neighboring pixels.

4. ANALYSIS OF APERTURE FRAGMENTATION
In this section we devise analysis and a procedure to deter-
mine what aperture is most suitable for the purpose of motion
and defocus deblurring. Similarly to [2], we perform a fre-
quency analyses of the aperture, in order to find a fragmenta-
tion patter that allows to preserve more frequencies than the
compact aperture for different motions and defocus scales.

4.1. Combinatorics of Aperture Fragmentation
Consider partitioning a conventional aperture in a regular grid
and moving the partitions within the chosen grid. Fragmenta-
tion can be seen as an “n choose m” allocation where m holes
are assigned among n possible locations. The number of
possible combinations can be readily obtained as n!

m!(n−m)! ,
which grows rather quickly as we increase the number of par-
titions. Hence, exhaustive search for the optimal fragmen-
tation becomes rapidly impractical. Fortunately, diffraction
poses a limit to the number of possible partitions by intro-
ducing a lower bound on the smallest diameter that we can
consider before blur starts increasing rather than decreasing.
By using the Rayleigh criterion we can obtain the smallest slit
∆min on the lens such that a point will be reproduced clearly
on the image sensor. We have that ∆min = 1.22Fλ

q , where F
denotes the focal length, λ is the light wavelength, and q is the
pixel resolution. In our case we use a CANON EOS 5D (i.e.,
q = 8.2µm) with a 50mm lens, and take the worst-case light
wavelength λ = 750nm (red visible light). As we downsam-
ple the input images once, which corresponds to simulating a
pixel resolution of q = 16.4µm, we have ∆min ≈ 2.79mm.

By imposing that compact aperture and fragmented aper-
ture must allow the same incoming light, one obtains that the
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maximum number m of possible square apertures is

m =

�
π

�
F

2F/#

�2 1
∆2

min

�
(5)

where �a� denotes rounding to the largest integer not exceed-
ing a. Conversely, given the number m of possible square
apertures, one obtains that the side of each square must be

∆ =
�

π

m

F

2F/#
. (6)

Let us illustrate these formulas with two examples. If we
fix the aperture of the conventional camera to, for instance,
F-number F/9 (i.e., an aperture with diameter 5.6mm for
a 50mm focal length lens), then the area of the aperture is
24.2mm2. In the fragmented aperture we aim at covering the
same area with apertures of at least ∆min×∆min=7.8mm2

area and this yields that no more than 3 square apertures are
possible, and therefore a modest 84 combinations in a 3 × 3
grid. Vice versa, suppose that we use as F-number F/7.1
and we are interested in allocating 3 square apertures, then
each square must have sides of 3.6mm (which is the dimen-
sion that we use in our experiments). Clearly, by using larger
apertures, grids with more combinations are possible.

4.2. Frequency Analysis
Now that we have reduced the search space, we need to de-
fine a metric to compare different apertures and establish how
much degradation they introduce. The analysis is carried out
in the frequency domain of each fragmented aperture. A small
patch of f (e.g., 64 × 64 pixels) is represented via the com-
plex Fourier series: f(i1, i2) =

�
n1,n2

f̂n1,n2e
j(n1i1+n2i2),

where f̂n1,n2 are the Fourier coefficients, and i1 and i2 are
pixels of the image. If we assume that the signal f is cor-
rupted by additional noise bounded in absolute value by ω,
we will not be able to recover frequencies corresponding to
Fourier coefficients below the noise level. Hence, we can de-
fine the number of Fourier coefficients above a given noise
level as a metric for the degradation introduced by a certain
aperture across several motion blur and defocus scale param-
eters. If k̂d,m

n1,n2
denotes the Fourier coefficients of the blurring

kernel kd,m, we can define the degradation metric Mω as

Mω =
�

d,m

�

n1,n2

(|k̂d,m
n1,n2

f̂n1,n2 | > w). (7)

In comparing different apertures we fix f̂ = 1 at all fre-
quencies and look for the highest Mω. This analysis results
in three optimal apertures shown in Fig. 2, where we have
examined 10 noise levels for ω between 10−2 and 10−1.
In Fig. 2 we show 1D slices corresponding to noise levels
ω = 0.04, 0.05, 0.1 of the normalized 2D frequency domain,
to illustrate that fragmentation better distributes degradation
across the frequency domain. The frequency response of a
conventional aperture (a disk with diameter 6.8mm) is shown
with a dashed red plot. We now consider fragmenting the con-
ventional disk aperture in a collection of smaller apertures,
thus retaining the same overall incoming light. All apertures

−0.5 −0.25 00 0.25 0.5 −0.5 −0.25 00 0.25 0.5 −0.5 −0.25 00 0.25 0.5

Fig. 2. The dashed red graph corresponds to different 1D
slices of the frequency response of a compact aperture, while
the solid blue corresponds to a fragmented aperture; the green
threshold indicates the noise level. Left: Best fragmentation
(evaluated over the entire 2D spectrum, not just a 1D slice)
for noise levels ω = 0.01− 0.04. Middle: Best one for noise
levels ω = 0.05 − 0.08. Right: Best one for noise levels
ω = 0.09− 0.10.

have the same noise levels. The corresponding response of
the three best fragmented apertures for each noise level are
shown in solid blue and the noise level (constant across all
frequencies) is shown in solid green. We find that fragmenta-
tion results in more frequencies above the given noise level.

5. SPACE-VARYING DEBLURRING
Given the blur parameters provided by the procedure in
Sec. 3, the space-varying deblurring task is a simpler problem.
Indeed, the image formation model is linear in the unknown
sharp image (although not a convolution) and efficient and
stable schemes for piecewise constant regularization exist.

As a first step we compute the first-order variation of the
cost functional in eq. (3) and obtain a discrete linearized ver-
sion of the Euler-Lagrange equations

KT
d̃,m̃

(g − ĝ) + αC · f = 0, (8)
where C is a matrix operator which performs a discretization
of f based on the previous estimate, as described in [18]. As
we reduced the cost functional minimization in eq. (3) to solv-
ing a linear system, standard numerical solvers can be used.
Unfortunately, because the linear system involves blur, it is
not diagonally dominant and fast solvers such as Gauss-Seidel
or successive overrelaxation cannot be employed. We resort
to conjugate gradient descent which does not have such limi-
tations: It converges in a finite number of steps and it is fairly
efficient (∼ 1 minute for a 640 × 480 image with a Matlab
implementation under a MacPro 2.6GHz quad-core CPU).

6. EXPERIMENTS
6.1. Performance
Before testing our algorithm with real images, we run a sim-
ulation to compare the performance of both defocus and mo-
tion estimation with the conventional aperture and the optimal
patterns we have found in the frequency analysis (Sec. 4.2).
The performance is evaluated under the same overall aper-
ture incoming light over a set of 10 possible depth (defocus)
and 64 different motions (8 directions by 8 sizes). For each
level we take the same image (70x70 pixels) of random tex-
ture and we simulate both the defocus process and the mo-
tion blur using eq. (1). Then we apply the local kernel, learnt
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Fig. 3. Real Data. Left: input image when using the fragmented aperture (pattern C); Center: estimated image when only
defocus blur is removed; Right: sharp image when both defocus and motion blurs are removed.

Mask Mean error / Accuracy
defocus scale motion direction motion size

Disk 2.53 / 13.5% 0.22 / 88.8% 1.48 / 27.2%
Pattern A 0.41 / 80.8% 0.15 / 94.0% 1.48 / 31.0%
Pattern B 0.63 / 77.3% 0.24 / 89.5% 1.53 / 30.8%
Pattern C 0.35 / 85.0% 0.11 / 95.0% 1.39 / 33.2%

Table 1. Aperture performance.

as described in Sec. 3, and obtain a blur estimation (defocus
scale, motion direction, and motion size). The output of the
algorithm is then compared with the groundtruth in order to
compute the error at each pixels. Table 1 reports the mean er-
ror and the accuracy (percentage of correct estimated pixels)
for each type of aperture: the first one (disk) is the aperture
of a conventional camera, while masks A, B, and C are the
patterns shown in Fig. 2 from top to bottom respectively. No-
tice that the fragmented apertures can reach an higher perfor-
mance than a compact aperture.

6.2. Real Data
We capture real images with the aperture pattern C (the right-
most pattern in Fig. 2) as it gives the best performance in the
synthetic analysis. The size of each of the 3 square apertures
is 3.6mm, which corresponds to a compact (circular) aperture
of about 7mm diameter (F/7.1 with a Canon 50mm lens). In
Fig. 3 we captured a typical scenario (the same picture with
the relative compact aperture is shown in Fig. 1), where the
camera brings into focus an area close to the foreground (the
red bus in this scene), leaving the shops in the background
out-of-focus. At the same time, the bus is moving from right
to left, while the rest of the scene is still. The maximum mo-
tion blur magnitude in this dataset is ∼ 12 pixels. We show
the reconstructed sharp texture when only defocus blur is re-
moved and when both defocus and motion-blur are corrected.

7. CONCLUSIONS
The task of deblurring a single image degraded by space-
varying motion blur and defocus is extremely ill-posed: a
small variation in the data (for instance, due to noise) results
in large variations of the blur parameters and the restored im-
age. We show that by fragmenting the aperture, blur param-
eters and details of the original sharp image can be recov-
ered more easily than in conventional apertures. Based on this
analysis we propose an algorithm where blur parameters are
first identified by using local projections onto subspaces and
deblurring is then performed as a separate step given all the

blur parameters. This procedure is then successfully tested on
a real scenario. Although we consider a parametric represen-
tation of motion, we believe that this is the first solution for a
space-varying deblurring algorithm from a single image.
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