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ABSTRACT
In this paper we present analysis and a novel algorithm to

estimate depth from a single image captured by a coded aper-

ture camera. This is a challenging problem which requires

new tools and investigations, compared with multi-view re-

construction. Unlike previous approaches, which need to re-

cover both sharp image and depth, we consider directly es-

timating only depth, whilst still accounting for the statistics

of the sharp image. The problem is formulated in a Bayesian

framework, which enables us to reduce the estimation of the

original sharp image to the local space-varying statistics of the

texture. This yields an algorithm that can be solved via graph

cuts (without user interaction). Performance and results on

both synthetic and real data are reported and compared with

previous methods.

Index Terms— Coded aperture, depth estimation, single

image, Bayesian methods.

1. INTRODUCTION
Shape estimation is the enabling step to performing tasks such

as autonomous navigation, object recognition, and human-

machine interaction. Typically, due to the difficulty of solving

this problem, one considers multiple images as input. In this

paper however, we are interested in investigating depth esti-

mation when only one image is provided. The main advantage

being that less data is transmitted, and the synchronization

and calibration of multiple imaging devices is not needed.

The single image we use is captured by using a coded aper-

ture camera. This technique has a long history starting from

the pioneering work of Ables [1] and Dicke [4] in X-ray tele-

scopes, and has been investigated in several research fields.

The key idea is that each element in the binary mask either

blocks or allows light to go through the main lens and gener-

ate a view of the scene on the sensor. Due to the additive na-

ture of light, such views are then averaged together in a coded
image (see Fig. 1). In this paper we address the task of recov-

ering the depth of the scene from a single coded image, which

we call shape from coded aperture. In its most general form,

solving this task involves both recovering the depth map of a

scene as well as restoring its sharp image. However, we show

how this task can be formulated in an equivalent problem that

depends only on the depth of the scene, whilst still taking into

account uncertainties in the values of the sharp image.
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Fig. 1. Left: Image captured using a coded aperture camera.

Right: Depth map recovered by our algorithm given the single

image at the left as input (white indicates closer objects).

1.1. Prior Work
Shape from coded aperture is, in general, an inverse prob-
lem and as such it can be formulated as blind deconvolution

[12, 10], thus exhibiting all the symptoms of this class of

problems. There are several passive methods geared specif-

ically for estimating depth from a single lens single expo-

sure image. For instance, [9] introduces a system for single-

image passive ranging based on a wavefront-coded aperture

and analyses its performance via information-theoretic prin-

ciples, similarly to [5]. More recent work [8] investigates 3D

point spread functions (PSF) whose transverse cross sections

rotate as a result of diffraction, and shows that such PSFs yield

an order of magnitude increase in the sensitivity with respect

to depth variations. The main drawback however, is that the

depth range and resolution is limited due to the angular reso-

lution of the reconstructed PSF.

Coded aperture photography has been recently introduced

in computer vision and computer graphics by Raskar et al.,
who formalized the idea of coding images both in time

[14] and space [15], and by Levin et al. who first proposed

Bayesian priors to address the problem [12]. In these meth-

ods both the depth map and the sharp image are reconstructed

from a single coded aperture image. However, the main dif-

ference between these methods and our approach is that while

they estimate the depth and the sharp image in two separate

steps and require post-processing, we explicitly avoid the es-

timation of the sharp image by marginalizing it. This strategy

allows one to limit the computational cost. Depth estimation

can also be obtained by employing alternative single camera

systems, such as the multiplexed coded aperture [13], differ-

3521978-1-4244-7994-8/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong



ential masking [6], and by changing camera settings [3, 7].

However all these methods are based on multiple images.

1.2. Contributions
We apply a sound Bayesian analysis to the problem. By

marginalising the unknown texture we concentrate on esti-

mating depth; however the statistical variation of the texture is

still taken into account. Also we show how filtering the input

can simplify the computation of the algorithm. This produces

a novel algorithm incorporating the required prior informa-

tion that avoids ambiguities in the solution. We obtain results

on real data without any post-processing or user intervention.

2. SHAPE FROM CODED APERTURE

A generic object can be represented by a texture f and a depth

d. We consider a mask composed of N small square apertures

each offset by Δi, i = 1 . . . N . Then, the image g captured

by a coded aperture camera with such a mask can be written

as the linear combination of N views:

g(p) =
1
N

∫ ( N∑
i=1

δd(p + d(p)Δi,q)

)
︸ ︷︷ ︸

hd(p,q)

f(p) dq + w(p),

(1)

where p is a pixel of the image g and q is a point of the object.

The operator hd(p,q) is called point spread function (PSF)

and it depends upon the parameters of the camera as well as

the 3D shape of the scene, and w is a zero-mean uncorrelated

additive Gaussian noise w(p) ∼ N (0, σ2). Eq. (1) can be

written in a linear matrix-vector form:

g = Hdf + w (2)

where Hd represents the space-varying convolution with the

aperture mask; this is conditional on the depth map d, which

is defined as a vector of depth values at each pixel of f .

2.1. Image Prior Model
Similarly to [2], we define an image prior based on a set of P
filtered versions of the original image f :

f̂k = Ckf , k = 1, . . . , P. (3)

The operators Ck are zero mean conditional high-pass filters

and each one of them is used to impose a particular contraint

on the restored image f .

Since g is Gaussian distributed and Ck is a linear opera-

tor, we can utilise the commutative property1 and obtain that

ĝk = Ckg = Hdf̂k + Ckw is also a Gaussian distributed,

and its conditional distribution is given by

p
(
ĝk

∣∣∣ f̂k,d
)

= N
(
ĝk

∣∣∣Hdf̂k,Ckσ2I
)

. (4)

The likelihood of our prior assumes that the kth filtered ver-

sions of the sharp image f follows a Gaussian distribution

with zero mean

1Strictly this only holds for planar scenes; however we find this is a rea-

sonable approximation if we work with locally frontal-planar patches.

p
(
f̂k |Ak

)
= N

(
f̂k

∣∣ 0,A−1
k

)
. (5)

where Ak is a diagonal matrix of variances ak(p) at each

pixel p. Chantas et al.[2] model the distribution of ak(p) as

a Gamma distribution, which leads to a heavy-tailed marginal

distribution for f̂k. A similar approach has been used in [12],

but they impose Ak = αI . Our assumption is that Ak is a di-

agonal matrix of unknown values which makes our marginal-

isation tractable. We write A = {A1 · · ·AP }.

In general, the complete inference problem may be

seen as estimating d, f̂ , and A from the observations

ĝ = [ĝT
1 , · · · , ĝT

P ]T . Since we are interested in depth esti-

mation alone, we consider instead how to solve the problem

d∗ = argmax
d

p (d | ĝ,A ) (6)

= argmax
d

p (ĝ |d,A )p (d) . (7)

We call shape from coded aperture the problem of recon-

structing the projected depth map d given the set of observed

filtered images ĝ, described in eq. (6). In the next section the

marginal likelihood in eq. (7) is obtained.

3. BAYESIAN DEPTH INFERENCE
We now describe how to estimate the depth map directly from

the observations without explicit estimation of the texture.

3.1. Marginalisation
To begin the analysis, we marginalise f̂k as follows:

p (ĝk |d,Ak ) =
∫

p
(
ĝk, f̂k |d,Ak

)
df̂k (8)

=
∫

p
(
ĝk

∣∣∣ f̂k,d
)
p
(
f̂k |Ak

)
df̂k (9)

= N (ĝk |μk(Ak),Σk(Ak) ) (10)

where2 μk(Ak) = 0 and Σk(Ak) = HdA−1
k HT

d + Ckσ2I .

This integration is achieved by applying the Gaussian inte-

gral.3 One could estimate Ak and use the definition of Σk to

evaluate the likelihood in eq. (10). For simplicity, we propose

to estimate Σk directly from the data. This becomes tractable

due to (i) the fact that eq. (10) is Gaussian, which allows us

to work with local conditional distributions (Section 3.2) and

(ii) the structure of Σk (Section 3.3).

3.2. Local Factorisation of Σk

To work locally, the Markov Random Field (MRF) principle

of conditional independence may be applied, if we can show

that the pixel p only depends on certain neighbours in a given

small region Np:

2The mean is given by μk(Ak) =

Σ−1
k

“
σ−2I + H−T

d AkH−1
d

”
σ−2H−1

d Akμf̂ where μf̂ = 0 in

our image prior model.
3Due to normalisation of the Gaussian distribution, we have

in general that
R ·· · R
RP×1

exp
ˆ− 1

2

`
xT Γx− 2βT x + α

´˜
dx =

(2π)P/2√
det |Γ| exp

ˆ− 1
2

`
α− βT Γ−1β

´˜
.
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Fig. 2. Structure of Np for different masks. Left to right: 2-

hole, 4-hole symmetric, 4-hole asymmetric, and 5-hole mask.

Notice that in the symmetric case some of the neighbours in

Np are counted more than once (brighter color).

p (ĝk[p] | ĝk[\p],d ) = p (ĝk[p] | ĝk[Np],d ) . (11)

In other words, rather than considering all other pixels ĝk[\p]
in the above expressions, we can just work with ĝk[Np]. This

will be shown in Section 3.3.

Since ĝk is Gaussian, the conditional distribution of one

pixel ĝk[p] in the image given the rest ĝk[\p] is also Gaussian,

with PDF

p (ĝ[p] | ĝ[\p],d ) = N
(

ĝ[p]
∣∣∣ νp|\p, Γp|\p

)
(12)

= N
(

ĝ[p]
∣∣∣ νp|Np

, Γp|Np

)
, (13)

with
νp|Np

= μ[p] + Σ[p, Np]Σ[Np, Np]−1 (ĝ[Np] − μ[Np])
(14)

Γp|Np
= Σ[p, p] − Σ[p, Np]Σ[Np, Np]−1Σ[Np, p], (15)

and μ[p] and μ[Np] become zero from the assumption de-

scribed in Section 2.1. The subscripts (k) are assumed but

omitted for clarity and indices inside brackets address rows

and columns of Σk, such that the following structure contains

all non-zero elements pertaining to the pixel p[
Σ[p, p] Σ[p, Np]

Σ[Np, p] Σ[Np, Np]

]
(16)

where Σ[p, Np] is of size 1×|Np| and Σ[Np, p] = Σ[p, Np]T .

3.3. Structure of the Local Neighbourhood in Σk

Since Ak is diagonal, the neighbourhood structure Np only

depends on the offsets in Hd. In Fig. 2 we show some exam-

ples of neighbourhood structure generated by HdA−1
k HT

d .

The bright point at the center of each image indicates the pixel

p and the surrounding points represent the neighbourhood Np.

Thus the neighbourhood Np of a pixel p can be

defined as Np = {p + δijd |i �= j ∧ i, j ∈ M} where

δij = (Δi − Δj) is a vector that represents the distance

between the aperture i and the aperture j in the mask M. The

number of elements in Np is given by

|Np| =
N !

(N − 2)!
= N(N − 1), (17)

which indicates that the amount of computations of our algo-

rithm increases with the number of apertures N in the mask.

Since we have verified that the pixel p only depends on a

small finite number of neighbours Np, we can apply the MRF

principle of conditional independence:

p (ĝ |A,d ) =
∏

p=1...M

p (ĝk(p) | ĝk(Np),d ) . (18)

Due to just one observation of the image being available, we

employ the ergodicity assumption of local stationarity, that is

a local window can be used to estimate the required statistics

at each point in the image.

4. MAP ESTIMATION OF DEPTH MAP
Given the local estimates of the image mean and variance

conditional on each possible depth (we assume a discrete

set of depth values corresponding to integer disparities),

we can consider maximising the posterior for d in eq. (7).

Due to the independence of the filtered observations [2],

p (ĝ |A,d ) =
∏

k=1...P p (ĝk |Ak, d ). We define the prior

p (d) as the penalty term on the gradients of the depth map in

the L1 norm (Gibbs distribution). We can now take the neg-

ative logarithm of the likelihood in eq. (7), apply the MRF

principle in eq. (18), and successively eq. (13); this yields

d∗ = argmin
d

(Edata(d) + Esm(d)) (19)

with

Edata(d) =
1
2

∑
k

∑
p

[
(ĝk(p) − νp|Np

)T Γ−1
p|Np

(ĝk(p) − νp|Np
)

+ log(2π det |Γp|Np
|)
]

(20)

Esm(d) = − log p (d) =
∑

p,{q∈Vp}
min(|dp − dq|, T ), (21)

where Vp is the neighborhood of a pixel p and T is a constant.

Thus Esm penalizes differences in the depths of neighbor-

ing pixels. Our inference procedure consist of minimising the

energy given by eq. (19) via Graph-Cuts [11]. In our imple-

mentation the number of operators Ck is P = 2, and they

correspond to discrete horizontal and vertical derivatives.

5. EXPERIMENTS
5.1. Performance
We have compared our algorithm with 5 methods previously

proposed for coded aperture images on different types of aper-

ture. Since the computational cost of our algorithm is rapidly

increasing with the number of apertures in the mask (as de-

scribed in eq. (17), consider only 3 simple ones: 2-hole, 3-

hole, and 4-hole masks. We synthetically simulated some

coded images by placing a plane of random texture at 33 dif-

ferent depths. Then we gave these images as input to the

methods and reported the mean error in Table 1 (occlusions

are not considered). SNR is taken into account by consider-

ing the amount of light that goes through each aperture. Since

our algorithm does not restore, its computational time is very

low for the types of masks we have analysed here: it takes less

then 1 minute (in a Pentium Core2Duo 3.00GHz) to compute

the depth map of a coded image of size 640× 480 taken with

a 2-hole mask, like the one shown in Fig. 1.
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(a) (b) (c) (d) (e) (f)

Fig. 3. Real data. Images given as input to our algorithm (top) and their relative depth map (bottom). The two scenes has been

both captured with 3 different masks: 2-hole (a, d), 3-hole (b, e), and 4-hole (c, f). Red color represents areas where depth has

not been estimated. All the datasets shown here will be available online from the authors’ website.

Methods Masks - (image noise level σ = 0.0001)

2-hole 3-hole 4-hole

Lucy-Richardson 14.2 15.4 13.9

Regular filters 11.9 14.9 13.9

Wiener filters 17.0 17.0 15.1

Gaussian priors[12] 12.1 15.2 13.7

Levin et al.[12] 13.9 15.2 13.7

Our method 8.7 9.3 8.7

Table 1. Performance comparison (mean error).

5.2. Real Data
Coded aperture images were obtained by inserting a mask into

a 50mm f /1.4 lens mounted on a Canon EOS-5D DSLR. The

shutter speed of each exposure was set to 40ms (ISO 500) for

images captured with the 2-hole mask, 33ms (ISO 400) with

the 3-hole mask, and 20ms (ISO 400) for the 4-hole mask.

Each aperture in the mask is a 4 × 4 mm square, and the dis-

tance between the centers of the holes is about 13 mm. We

apply our algorithm to two different kinds of scenario to show

how it performs with different ranges of depths and changes

of mask. In order to maximise the disparities, we set the focal

plane of the camera lens just after the object of interest (Fig.

1 and Fig. 3(a, c)) or just before them (Fig. 3(d, f)). Fig. 3(a-

c) displays a scene with several objects placed at distances

between 80cm and 120cm from the camera lens, while Fig.

3(d, f) represents a scene with a wider range of depths (from

200cm to 350cm). One can notice from the estimated depth

maps that when we increase the number of the apertures in

the mask we loose details but we solve some ambiguities due

to occlusion or repeating texture which are present in images

captured with masks with 2 or 3 apertures. Fig. 1 in front

page shows a depth map obtained from a coded aperture im-

age capture with a 2-holes mask. The focal plane is at 120cm

and the objects are placed in a range of 50cm.

6. CONCLUSIONS
We have presented analysis and a simple algorithm to solve

shape from coded aperture. We propose a novel depth in-

ference procedure in a Bayesian framework that has higher

performance then previous method based on a single image

as input. We introduce both priors on the scene texture and

depth map, and show how to bypass recovery of the sharp

texture, without restrictive assumptions.
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