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Abstract

Most algorithms for reconstructing shape from defocus
assume that the images are obtained with a camera that has
been previously calibrated so that the aperture, focal plane,
and focal length are known. In this manuscript we char-
acterize the set of scenes that can be reconstructed from
defocused images regardless of calibration parameters. In
lack of knowledge about the camera or about the scene,
reconstruction is possible only up to an equivalence class
that is described analytically. When weak knowledge about
the scene is available, however, we show how it can be ex-
ploited in order to auto-calibrate the imaging device. This
includes imaging a slanted plane or generic assumptions on
the restoration of the deblurred images.

1. Introduction
Images taken with a finite aperture, as opposed to a pin-

hole, exhibit spatial frequencies that depend on the shape of
the scene, in addition to its radiance. It has been noticed
long ago that, under suitable assumptions on the radiance,
one could infer the depth map of a scene from a single im-
age [12], or one could measure multiple images with dif-
ferent aperture settings and recover both the depth map and
a “deblurred” image, i.e., the radiance of the scene [15].
Shape from defocus (SFD) has since become an active niche
in computer vision, with relations to restoration and blind
deconvolution in image processing, and applications to con-
focal microscopy, fine-scale metrology and high-definition
photography [10]. A snapshot of the state of the art at vari-
ous times has been captured by textbooks such as [3, 8] and
a variety of recent algorithms have been proposed that con-
centrate on various aspects of the problem from accuracy
(optimality of the reconstruction [14, 7]) to computational
efficiency (multi-scale or real-time implementations [4, 17])
to the design of dedicated hardware [10].

In order to return an estimate of the shape of the scene
(represented by its depth map) and of its radiance (the “de-
blurred” image), however, all existing algorithms require

knowledge of the internal parameters of the camera, includ-
ing its aperture, focal length, and position of the imaging
plane. A variety of calibration procedures have been de-
vised to measure such parameters, as well as to compen-
sate for magnification and alignment artifacts due to the
changes in imaging geometry caused by most common fo-
cusing mechanisms in commercial cameras. Most methods
for camera calibration, for instance [16], are based on a pin-
hole model of the camera. However, camera calibration can
also be obtained by exploiting defocus information, as in
[1] and, more recently, in [2].1

It is well-known that, given images taken from pin-hole
cameras at different vantage points, in the absence of cali-
bration information we can reconstruct the geometry of the
scene up to a global projective transformation [5]. It is also
common practice to exploit partial knowledge of the scene,
for instance the presence of parallel lines, to infer some or
all of the calibration parameters, and to upgrade the recon-
struction to knowledge up to an affine, or similarity trans-
formation [9]. We also know that reconstruction up to the
equivalence class induced by projective (or affine, or sim-
ilarity) transformations is sufficient to accomplish certain
tasks, such as hand-eye coordination or reprojection of the
scene onto a novel vantage point. What about images taken
from the same vantage point, but with different apertures
or focal lengths? Can we describe the equivalence class
of scenes that are indistinguishable from defocused images
in the absence of calibration information? And can we use
generic knowledge about the scene in order to reduce this
equivalence class, and upgrade the reconstruction to affine
or Euclidean? Finally, can reconstruction up to this equiv-
alence class be useful for other tasks; for instance, can we
still restore an image from an uncalibrated reconstruction?

In this paper we address these questions as follows: We
give an analytical characterization of the reconstruction of
shape from defocus in the absence of calibration data (un-

1Camera parameters are fundamental in shape from defocus; this is
shown in [13] where the set of camera parameters that yield optimal recon-
struction is determined (based on the Cramer-Rao bound of the variance of
the error in the estimate of blur).
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calibrated reconstruction, Claim 1). We then show that
knowledge of the presence of planes in the scene allows
partial recovery of calibration parameters and allows up-
grading the reconstruction (autocalibration, Claim 2). Fi-
nally, we show that uncalibrated reconstruction and partial
knowledge of the camera parameters is sufficient to deblur
the images (Sect. 4).

1.1. Formalization of the problem

Consider an image obtained with a camera with point-
spread function (PSF) h : R2 → R+ that has some con-
trollable degrees of freedom, for instance the distance be-
tween the plane of the lens and the sensor as in the focusing
mechanism of common commercial cameras. Usually such
a controllable degree of freedom is related to the scale of
the PSF, called blur radius2 b ∈ R+ via

b(x) =
Dv

2

∣∣∣∣ 1
F
− 1

v
− 1

s(x)

∣∣∣∣ (1)

where D is the (fixed) lens diameter, F is the (fixed) focal
length, s : Ω ⊂ R2 → R+ is the shape of the scene, repre-
sented as the graph of a function with domain on the plane
of the sensor, and v is the controllable lens parameter (the
distance between the sensor and the lens). We indicate the
image formation process as

I(x|ν) =
∫

h(x, y|b(y))r(y)dy x ∈ Ω ⊂ R2 (2)

where r : R2 → R+ is the radiance of the scene and
ν = {D,F, v} are the calibration parameters embedded
in b. The conditions under which one can reconstruct the
shape s(·) given two or more images I(x|ν1), I(x|ν2) are
described in [6], and involve assumptions on the radiance r
(trivially, a constant radiance does not allow the reconstruc-
tion of the correct shape). However, even under these con-
ditions, reconstruction of the correct shape requires knowl-
edge of the calibration parameters ν1, ν2 that are charac-
teristics of the imaging device and are not easily measur-
able. It is common to assume that the two images are ob-
tained by changing only one of the calibration parameters,
via the focusing mechanism, for instance ν1 = {D,F, v1}
and ν2 = {D,F, v2}.

The first question we address pertains to the degree in
which a scene can be reconstructed in the absence of cal-
ibration information. More specifically, we want to char-
acterize all scenes that are indistinguishable from the given
data, in the sense of yielding the same images under differ-
ent calibration parameters. We concentrate on the depen-
dency of the reconstruction on calibration parameters, and
assume that the conditions on the radiance described in [6]

2This name is because for pill-box PSF this is the actual radius of the
pill-box.

are satisfied, which we express by saying that the radiance
is admissible.

Problem 1 Let a scene with shape s and radiance r gen-
erate two or more images Ij(x|νj) under calibration pa-
rameters νj , j = 1, . . . , N ≥ 2. Characterize the scenes
s̃ that yield the same images Ij for some set of calibration
parameters ν̃j , for all admissible radiances r.

We call such scenes s̃ indistinguishable from s, and we
characterize them in Claim 1. Note that the condition that
the scenes be indistinguishable for all admissible radiances
reflects our interest in characterizing the generic ambigui-
ties in uncalibrated reconstruction. Of course, for any given
radiance r one could construct different scenes that, for that
radiance, yield identical images. These are pathological
ambiguities that have rather limited interest since they are
specific to a particular radiance.

More interesting is to ascertain whether there are generic
properties of (part of) the scene that can be enforced in order
to reduce the generic ambiguities. The simplest conceivable
is linearity, i.e., the presence of planes in the scene:

Problem 2 Determine the subset of indistinguishable
scenes that preserve linearity.

This problem is addressed in Claim 2, where we show that
knowledge of the presence of planes in the scene can be
exploited to upgrade the reconstruction and partial autocal-
ibration. In Claim 3 we also show that adding additional
views does not help reducing the unknowns. Finally,

Problem 3 Characterize the class of deblurred images that
can be retrieved from blurred ones in the absence of cali-
bration information.

This is addressed in Section 4. Although these results are
proven analytically, to test the relevance of the claims we
validate them also experimentally on synthetic as well as
real images captured with ground-truth calibration in Sec-
tion 5.

2. Uncalibrated reconstruction
Before we address Problem 1 we must guarantee the

uniqueness of the relationship between shape and blur ra-
dius expressed in eq. (1). We do so by considering radiances
that are sufficiently exciting.

Definition 1 Let Ij , j = 1, 2 be obtained by a scene s, r

and Ĩj , j = 1, 2 be obtained by s̃, r; then, the radiance r is
sufficiently exciting if Ij = Ĩj if and only if bj = b̃j , ∀ x ∈
Ω ⊂ R2, j = 1, 2.

This definition guarantees that scenes with the same shape
would yield identical images only if they were subject to
the same amount of defocus. We therefore move on to the
solution of Problem 1, summarized in the following claim.



Claim 1 The set of scenes s̃ that are indistinguishable from
a given scene s that is non-equifocal (s(x) 6= const.) be-
long to the following set{

s̃ : R2 → R+

∣∣∣∣ 1
s̃(x)

= α
1

s(x)
+ β, ∀x

}
(3)

where α, β are constants.

Proof: By substituting eq. (1) into bj = b̃j , j = 1, 2 and by
replacing the absolute value, we get

1
s̃(x)

= ±Dvj

D̃ṽj

(
1

s(x)
+

1
vj
− 1

F

)
+

1
F̃
− 1

ṽj
, j = 1, 2

(4)
It follows from (4) that there are 4 possible sign and index
combinations, i.e.,{

1
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( 1
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1
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ṽ2
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1
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By assuming that s(x) and s̃(x) are not constant eq. (5)
yields

Dv1

D̃ṽ1

=
Dv2

D̃ṽ2

(9)

Dv1

D̃ṽ1

(
1
v1

− 1
F

)
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1
F̃
− 1

ṽ1
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Dv2

D̃ṽ2

(
1
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− 1
F

)
+

1
F̃
− 1

ṽ2
.

(10)
We can deduce that eqs. (9,10) hold either if D = D̃ and
v1
ṽ1

= v2
ṽ2

or if v1 = v2 and ṽ1 = ṽ2. The latter is trivially
eliminated since we assume that the two images in each set
are obtained with different values of v.

Similarly we can obtain conditions on focal settings ac-
cording to the last three cases eqs. (6-8), but since all pa-
rameters must be positive, these ambiguities can be dis-
carded. So, in order to generate the same images I1 and I2,
the following constraints on calibration parameters must be
satisfied

D = D̃ and
v1

ṽ1
=

v2

ṽ2
. (11)

This leads to
1

s̃(x)
=

α

s(x)
+ β, ∀x (12)

with α = v1
ṽ1

and β = 1
F̃
− α

F .

3. Partial autocalibration

In this section we explore the extent in which unique re-
construction is possible even in the absence of calibration
information. In order to further reduce the indistinguish-
able set one can exploit partial knowledge about the scene,
or partial knowledge about the imaging device. We explore
these two options in order.

3.1. Partial scene knowledge

As we have seen in the previous section, all scenes that
are indistinguishable given a set of images because of lack
of knowledge of calibration parameters are related via an
affine transformation of the inverse depth. Because such a
transformation does not preserve certain properties of the
scene, we can attempt to use prior information to recon-
struct the correct shape of the scene despite lack of knowl-
edge of calibration parameters, in a way analogous to re-
construction from vanishing points in structure from motion
[11].

Claim 2 If s(x) = aT x + b with a 6= 0, i.e., if the scene is
a slanted plane, then the indistinguishable set is a plane if
and only if β = 0.

Proof: Suppose the indistinguishable set has the form
s̃(x) = cT x + d. It follows from (12) that for all x ∈ Ω we
must have

aT x + b = α(cT x + b) + β(aT x + b)(cT x + d) (13)

Then the quadratic term of the above equation must be zero,
that is, β(acT ) = 0. Since a 6= 0, we must have either
β = 0 or c = 0. If c = 0 then s̃(x) = d is constant; this
implies that α = 0, which is not admissible (see Claim 1).

By substituting back into eq. (12) we get

aT x + b = α(cT x + d) (14)

which means that enforcing planarity in the uncalibrated re-
construction yields the correct reconstruction up to a sin-
gle scale α (i.e., the reconstruction is a plane parallel to the
original one).

This suggests a procedure for autocalibration: Assuming
that the scene contains one or more planes, perform recon-
struction using arbitrary parameters, then adjust them until
the uncalibrated reconstruction is planar. One could auto-
mate this process by introducing a complexity measure for
the uncalibrated reconstruction so as to enforce planarity in
a minimum-description length framework, but this is well
beyond the scope of this paper. In Section 5.2 we give
experimental evidence that planarity is not preserved when
β 6= 0.



3.2. Multiple views

In addition to having partial knowledge about the scene,
we could have partial knowledge about the cameras, for in-
stance by knowing that more than two views are captured by
the same camera (e.g., same D and F , the only change be-
ing the scalar parameters vj .) Unfortunately, the following
claim shows that using more images does not help reducing
the ambiguity in the reconstruction.

Claim 3 Multiple views cannot eliminate the affine ambi-
guity; i.e., given N ≥ 3 images Ij , j = 1, . . . , N with dif-
ferent parameters vj , the reconstruction is known up to 2
parameters, as described in Claim 1.

Proof: Consider three images, Ij , j = 1, 2, 3. Suppose we
can reconstruct a scene sij from images Ii, Ij for i 6= j,
thus getting three depth maps. We will prove that all the
depth maps sij are identical, which means that additional
images do not carry information.

Since the depth maps s23 and s13 yield the same image
I3, we get

Dv3

2

∣∣∣∣ 1
F
− 1

v3
− 1

s23

∣∣∣∣ =
Dv3

2

∣∣∣∣ 1
F
− 1

v3
− 1

s13

∣∣∣∣ (15)

Let us assume that s23 6= s13. Then, from the above equa-
tion it follows that

1
s23

+
1

s13
= 2

(
1
F
− 1

v3

)
(16)

If all the depth maps are different, then similarly to eq. (16),
we obtain

1
s13

+
1

s12
= 2

(
1
F
− 1

v1

)
(17)

and
1

s12
+

1
s23

= 2
(

1
F
− 1

v2

)
. (18)

By solving with respect to sij in the three equations (16-18),
we obtain that all sij are constant, that is in contradiction
with the assumption of Claim 1.

In the case where two depth maps are the same, while
a third one is different from the first two, we assume that
s23 6= s13 and s13 = s12. Then, by comparing eq. (16) and
eq. (18) we obtain

1
F
− 1

v3
=

1
F
− 1

v2
(19)

This implies that v2 = v3, that contradicts our initial as-
sumption of having different focal settings.

The case of N > 3 follows by induction. Assume that
the reconstructions obtained from any N − 1 images yields
the same depth map, and then consider an additional new
image IN . For any i 6= j, with i, j = 1, . . . , N − 1, three

images Ii, Ij and IN yield three depth maps sij , siN , sjN .
As shown in the first part, these three depth maps are iden-
tical. Since i, j are arbitrary, we conclude that adding a
new image will not add more constraints to the depth map
reconstruction.

4. Calibration parameters in image restoration
As we have seen, once two or more images are given,

we can compute an uncalibrated reconstruction s̃(x|α, β)
such that 1

s̃ = α
s + β for some arbitrary α, β. This can be

done with any SFD algorithm, for instance those described
in [3]. Once we have a reconstruction, albeit a wrong one,
we can use it to obtain a “deblurred” version of the original
images, or an estimate of the radiance of the scene. It is
then immediate to show that

Claim 4 If we are given 2 defocused images, the true lens
aperture D and the ratio between v1 and v2, then image
restoration can be performed exactly even if the true shape
is unknown.

Proof: If we obtain the depth map s̃ with camera parameters
D̃, ṽ1 and ṽ2 satisfying the given lens aperture D and the
ratio between v1 and v2, then the estimated depth map s̃
will generate the same blur radii as with the true depth map
and the true camera parameters. By Claim 1 when D̃ = D
and ṽ1

ṽ2
= v1

v2
the estimated shape s̃ satisfies

1
s̃(x)

=
vi

s(x)ṽi
− 1

F̃
+

vi

F ṽi
(20)

so that we can immediately verify that for i = 1, 2

b̃i(x) =
D̃ṽi

2
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ṽi
− vi

s(x)ṽi
− 1

F̃
+

vi

F ṽi

∣∣∣∣
=

Dvi

2

∣∣∣∣ 1
F
− 1

vi
− 1

s(x)

∣∣∣∣ = bi(x).

(21)
Notice that the estimated shape s̃ is still ambiguous, al-
though the blur radii are fully determined. Then, once the
blur radii are determined, the PSF h is fully determined and
identical to the true PSF. Hence, image restoration can be
performed exactly.

Of course, if these two parameters are not known, then
image restoration can not be performed exactly unless we
introduce additional constraints. We analyze and predict
how the radiance will be restored based on partial or no
knowledge of these two parameters. We consider the case
of unknown D and known ratio v1

v2
. Other cases do not yield

any simple analysis of image restoration. If only D is un-
known, then the blur radii will be globally and uniformly
larger or smaller than the true ones. This means that a sim-
ple image restoration algorithm will return a radiance that



is overall oversharpened or undersharpened with respect to
the true radiance.

However, in this case it might be possible to perform ex-
act image restoration. If there exist points in the scene that
are in focus, it is possible to estimate the aperture diame-
ter D. The knowledge of the ratio v1

v2
and the reconstructed

shape s̃ allow us to predict exactly which points in the scene
are in focus for a given setting vi. Then, since the defo-
cused image with setting vi coincides with the true radiance
at these points, we can use the defocused image with set-
ting vi as radiance and estimate the exact blur radius in the
other defocused image. This will yield the correct aperture
diameter D.

5. Experimental validation

In this section we validate the claims proven
analytically above on experiments with real and
synthetic image sets. For convenience, we have
used the data and algorithm for SFD developed
by [7] that is publicly available on the web at
http://www.eps.hw.ac.uk/ pf21/downloads.

5.1. Uncalibrated reconstruction

In this set of experiments we consider 10 synthetic data
sets and 2 real data sets. All the input images are shown in
Figure 1. In particular, the bottom pairs of images corre-
spond to the real data sets. For each data set we have the
true calibration parameters. We test the algorithm for SFD
on each data set by selecting calibration parameters that are
intentionally different from the ground truth. In Figure 2 we
show some examples of reconstructed depth maps when cal-
ibration parameters are different from the ground truth. We
then match the estimated depth map to the ground truth (the
depth map obtained with the correct camera parameters) by
using the affine model (12) and compute the correspond-
ing α and β. We compare each estimated parameter with
the corresponding parameter predicted by our analysis. The
differences between two types of parameters and the results
of matching the estimated shapes with the affine model are
then listed in Table 1. As one can notice, the low match-
ing errors validate the analysis carried out in the previous
sections and show that the affine model derived in eq. (12)
holds.

We also show how the matching error changes with noise
on the Wave data set. Figure 3 illustrates the matching er-
ror (mean and standard deviation) with different levels of
white noise, i.e., by adding noise to the original data with
variances 0.5, 1, 5, 20, 40 respectively (in grayscale images
with 256 levels). In Figure 3 notice that despite the large
amount of noise in the input images (e.g., tick number 5
corresponds to additive Gaussian noise with a variance of
40) , the affine model holds very well.

Figure 1. Data sets. The first 5 rows are synthetic data sets while
the last row is a real data set. From left to right and top to bottom
we have: The Wave data set, the Box data set, the Plane data set,
the ExpX data set, the ExpY data set, the InvX data set, the InvY
data set, the SinX data set, the SinY data set, the Slope data set,
the Cylinder data set and the CupToast data set.

5.2. Autocalibration

In this section, we experimentally verify Claim 2. We
show that planarity is not preserved if incorrect calibration
parameters are used. To do so, we consider the Slope data
set because it is made of a slanted plane not parallel to the
image plane. In Figure 4 we display the depth map esti-
mated with correct calibration parameters (blue plane on the
left of each image) and compare it with the depth maps es-
timated with incorrect calibration parameters. In particular,
the plane next to the ground truth (the green plane) has been
estimated with β = 0 while the other curved surfaces have
been reconstructed with β 6= 0. On the bottom image of
Figure 4 we display the same estimated depth maps from
a vantage point that enhances the distortion introduced by
incorrect calibration parameters. We compare 3 different
experiments with the true depth map.



Figure 2. Estimated depth map for the Box and Wave data sets. The top-left image is the depth map of the Box data set estimated with
correct calibration parameters; the first image on the left of the third row is the depth map of the Wave data set estimated with correct
calibration parameters; all the other images depict depth maps of the corresponding data sets estimated with incorrect camera parameters.
Notice that the depth maps estimated with incorrect camera parameters are visually very similar to the true depth map. Indeed, as we show
in Table 1, the transformation between each pair of depth maps is the affine model in eq. (12).

5.3. Image restoration

In this section we validate Claim 4. Figure 5 shows that
one can reconstruct the radiance without knowledge of the
scene depth map. The focal settings and radiance of the syn-
thetic data set “Wave” are known to us. We reconstruct the
estimated radiance with random parameters while keeping
D and the ratio between v1 and v2 unchanged. The relative

error between the estimated radiance with random and true
parameters is 0.0058 (in grayscale images with 256 levels).
In the case of the real data set “CupToast” we compute the
estimated radiance both with true and random parameters,
yielding 0.0021 as relative error.



Table 1. The means and standard deviations of differences between
α and α̂, β and β̂, and matching errors (we display the estimated
value multiplied by 103), where α̂, β̂ are obtained by minimizing
eq. (12) using least squares, and matching errors are measured by
‖s(x)− αs̃(x)− βs(x)s̃(x)‖ in L2 norm.

|α − α̂| |β − β̂| matching errors
Data set Mean Var Mean Var Mean Var

Box 0.031 0.026 0.059 0.050 0.475 1.167
Plane 0.000 0.000 0.000 0.000 0.000 0.000
ExpX 0.020 0.019 0.038 0.035 0.160 0.287
ExpY 0.045 0.052 0.087 0.099 0.229 0.386
InvX 0.004 0.003 0.006 0.004 0.533 1.189
InvY 0.051 0.031 0.088 0.053 0.972 2.029
SinX 0.001 0.001 0.029 0.027 0.215 0.378
SinY 0.010 0.007 0.036 0.024 0.257 0.275
Slope 0.000 0.000 0.000 0.000 0.000 0.002
Wave 0.186 0.126 0.124 0.084 2.392 3.479

Cylinder 2.323 1.828 4.046 3.184 40.97 108.6
CupToast 0.035 0.021 1.562 0.938 0.193 0.129

Figure 3. Errors in α, β, and affine model matching as differ-
ent levels of noise are added to the original images in the Wave
Dataset. In the abscissa axis the ticks 1, 2, 3, 4 and 5 correspond
to five levels of Gaussian noise with variance 0.5, 1, 5, 20, 40 re-
spectively.

6. Discussion

In this paper we have addressed the problem of recover-
ing shape and radiance of a scene from deblurred images
in the absence of calibration information, that is without
knowing the lens diameter, focal length and position of the
image plane. Following an analogy with structure from mo-
tion, we have shown that it is possible to characterize the
set of scenes that can be reconstructed from uncalibrated
data with a simple analytical model, and that partial knowl-
edge about the scene (e.g., the presence of planes) can be
exploited to reduce the ambiguity in uncalibrated recon-

Figure 4. Autocalibration. Planar scenes can be used to calibrate
the camera. The top image depicts a side view of the reconstructed
depth maps while the bottom image shows the top view of the same
plot. On the left of the plot of each image we show the depth map
estimated with correct camera parameters (the blue leftmost plane)
and the depth map estimated with β = 0 (the green plane, second
from the lef). The two curved surfaces on the right hand side are
depth maps that have been estimated with incorrect camera param-
eters. As one can immediately observe, the depth maps estimated
with incorrect camera parameters are no longer planar.

struction. Furthermore, we have explored the effects of un-
calibrated distortions in the reconstruction on shape in the
restoration of the original images, and shown that image
restoration is partially sensitive to lack of calibration pa-
rameters.
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Figure 5. Estimated depth and radiance for the “Wave” and “CupToast” data sets. The top-left image is the true radiance of the Wave data
set; the second is the radiance estimated by random parameters with fixed D and v1

v2
. The top-right two images are the true depth map and

estimated one respectively. The images in the second row are reconstructed radiance and depth maps for real data set “CupToast” with
true and random parameters respectively. Although the depth maps are different, the relative errors of the two radiance functions are small:
0.0058 for the “Wave” data set and 0.0021 for the “CupToast” data set.

References
[1] M. Aggarwal and N. Ahuja. Estimating sensor orientation

in cameras. In ICPR ’00: Proceedings of the International
Conference on Pattern Recognition, pages 896–9, Washing-
ton, DC, USA, 2000. IEEE Computer Society. 1

[2] M. Baba, M. Mukunoki, and N. Asada. A unified camera cal-
ibration using geometry and blur of feature points. In ICPR
’06: Proceedings of the 18th International Conference on
Pattern Recognition, pages 816–9, Washington, DC, USA,
2006. IEEE Computer Society. 1

[3] S. Chaudhuri and A. N. Rajagopalan. Depth from defocus: a
real aperture imaging approach. Springer-Verlag, 1999. 1, 4

[4] T. Darrell and K. Wohn. Pyramid based depth from focus. In
Computer Vision and Pattern Recognition, pages 504–509,
1988. 1

[5] O. Faugeras. Three dimensional vision, a geometric view-
point. MIT Press, 1993. 1

[6] P. Favaro, A. Mennucci, and S. Soatto. Observing shape from
defocused images. International Journal of Computer Vi-
sion, 52(1):25–43, 2003. 2

[7] P. Favaro and S. Soatto. A geometric approach to shape from
defocus. IEEE Trans. Pattern Anal. Mach. Intell., 27(3):406–
17, 2005. 1, 5

[8] P. Favaro and S. Soatto. 3-d shape reconstruction and image
restoration: exploiting defocus and motion-blur. Springer-
Verlag, 2006. 1

[9] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, 2000. 1

[10] M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. McDowall, and
M. Bolas. Synthetic aperture confocal imaging. ACM Trans.
Graph., 23(3):825–834, 2004. 1

[11] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An invitation to
3D vision, from images to models. Springer Verlag, 2003. 3

[12] A. P. Pentland. A new sense for depth of field. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
9(4):523–531, July 1987. 1

[13] A. N. Rajagopalan and S. Chaudhuri. Optimal selection of
camera parameters for recovery of depth from defocused im-
ages. In Computer Vision and Pattern Recognition, pages
219–224, 1997. 1

[14] A. N. Rajagopalan and S. Chaudhuri. An mrf model-based
approach to simultaneous recovery of depth and restoration
from defocused images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 21(7):577–589, July 1999. 1

[15] A. N. Rajagopalan, S. Chaudhuri, and U. Mudenagudi.
Depth estimation and image restoration using defocused
stereo pairs. IEEE Trans. Pattern Anal. Mach. Intell.,
26(11):1521–1525, 2004. 1

[16] R. Tsai. A versatile camera calibration technique for high
accuracy 3d machine vision metrology using off-the-shelf
tv cameras and lenses. IEEE J. Robotics Automat., RA-
3(4):323–344, 1987. 1

[17] M. Watanabe and S. K. Nayar. Rational filters for passive
depth from defocus. International Journal of Computer Vi-
sion, 27(3):203–225, May 1998. 1


