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Abstract. In this work, a method that synchronizes two video sequences
is proposed. Unlike previous methods, which require the existence of cor-
respondences between features tracked in the two sequences, and/or that
the cameras are static or jointly moving, the proposed approach does not
impose any of these constraints. It works when the cameras move inde-
pendently, even if different features are tracked in the two sequences.
The assumptions underlying the proposed strategy are that the intrinsic
parameters of the cameras are known and that two rigid objects, with
independent motions on the scene, are visible in both sequences. The
relative motion between these objects is used as clue for the synchro-
nization. The extrinsic parameters of the cameras are assumed to be
unknown. A new synchronization algorithm for static or jointly moving
cameras that see (possibly) different parts of a common rigidly moving
object is also proposed. Proof-of-concept experiments that illustrate the
performance of these methods are presented, as well as a comparison
with a state-of-the-art approach.

1 Introduction

In the last few years, the proliferation of digital cameras transformed the ac-
quisition and manipulation of videos into common tasks. Having several videos
of a given event, recorded by different people from different viewpoints, is thus
more and more common. Synchronizing these videos is essential to merge all the
available information, which can then be used in a wide range of areas, such as
3D reconstruction, human action recognition, calibration of multiple cameras, or
dynamic depth estimation, see examples in [22], [24], [16], and [26], respectively.

In professional applications, it is possible to synchronize two cameras using
proper hardware. However, such hardware is expensive and is usually not avail-
able to the common user. Moreover, in many situations, synchronizing the videos
turns out to be important only after their acquisition. Therefore, since accurate
manual synchronization is both tedious and difficult, the problem of synchroniz-
ing two videos, usually acquired by cameras with unknown relative inter-camera
extrinsic parameters, has received a lot of attention in the last decade.

1.1 Previous Work

The video synchronization problem that has received more attention from the
scientific community considers that the cameras are static and that there exist
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correspondences between the features observed in the two videos. Two of the
directions of work that have been pursued to solve this problem are presented by
Tresadern and Reid in [20] and by Caspi and Irani in [2], in what they called the
“feature-based sequence alignment” approach. In the first case, the time offset
is found by searching for the minimum of the relative magnitude of the fourth
singular value of the “measurement matrix” introduced by Tomasi and Kanade
in [19]. The second strategy aligns video sequences, in time and space, when
the two sequences are related by a homography or by the projective epipolar
geometry. To overcome the requirement that the cameras are static or jointly
moving, i.e., that the relative inter-camera extrinsic parameters do not change,
and that correspondences between the features observed in the two videos exist,
some research has been done on algorithms that drop one of these assumptions.

In [2], Caspi and Irani present a second method, the “direct intensity-based
sequence alignment”, which exploits spatio-temporal brightness variations within
each sequence. This approach can handle complex scenes and drops the need for
having feature correspondences across the two sequences, but still requires that
the cameras are static or jointly moving and that they see the same scene. In
[22], Wolf and Zomet propose a strategy that builds on the idea that every 3D
point tracked in one sequence results from a linear combination of the 3D points
tracked in the other sequence. This approach copes with articulated objects, but
still requires that the cameras are static or moving jointly.

There are also some works that can deal with independently moving cameras,
but at the cost of requiring the existence of correspondences between features
tracked in the two video sequences. Tuytelaars and Van Gool were the first to ad-
dress the problem of automatic video synchronization for independently moving
cameras and general 3D scenes, see [21]. This is done by reformulating the video
synchronization problem in terms of checking the rigidity of at least 5 non-rigidly
moving points, matched and tracked throughout the two sequences. Another ex-
ample is the work by Meyer et al. [11], which consists of a two-step algorithm
that leads to subframe-accurate synchronization results. First, an algorithm that
estimates a frame-accurate offset by analysing the motion trajectories observed
in the images and by matching their characteristic time patterns is used. After
this step, subframe-accurate results are obtained by estimating a fundamental
matrix between the two cameras, using a correspondence of 9 non-rigidly mov-
ing points in the scene. Both the motion of the cameras and the motion of the
tracked object are assumed to be linear between consecutive time instants.

Video synchronization has been addressed from different perspectives. How-
ever, to the best of our knowledge, the most general and complex case, which
arises when the cameras move independently and the parts of the moving object
in the field of view of each camera do not intersect, is yet to be solved. None of the
previous strategies would work in this situation, as there is no correspondence
between the features observed in the two cameras. In [23], Yan and Pollefeys
suggest a novel algorithm that uses the correlation between the distributions of
space-time interest points, which represent special events in the videos, to syn-
chronize them. This method does not explicitly require feature correspondences
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and static or jointly moving cameras, but their fields of view must intersect and
its performance degrades as the baseline between the cameras gets wider.

1.2 Contributions

The main contribution of our work is a method that synchronizes two video
sequences acquired by independently moving cameras that see (possibly) differ-
ent parts of a common rigidly moving object, see Fig. 1. The scene recorded
by the cameras must also include a second common object (typically a static
background), whose motion must be independent of the one of the first object.
From now on, this second object is referred to as the background. The fields
of view of the two cameras may not intersect and no knowledge about the cor-
respondence between the two video sequences, in terms of which trajectories
belong to which objects, is required. This is one of the most common video syn-
chronization problems, as it occurs every time two people use handheld cameras
to record a rigid object moving on a static background (e.g., a car moving on
the street). The relative inter-camera extrinsic parameters are unknown and the
intrinsic parameters of the cameras (which can be calibrated a priori using the
typical approaches, see [25] and [1]) are assumed to be known. The idea is to
track two sets of features in each video sequence: one on the moving object and
other on the background. These sets are used to retrieve the motion of the two
objects with respect to each camera, using state-of-the-art structure and motion
methods, see [8] and [18]. These results can be used to obtain information about
the motion of one object with respect to the other, which is used as clue for the
synchronization process. When the correspondences between the features and
the two trajectories are not known, subspace clustering algorithms, such as the
ones presented in [4] and [9], can be used to segment the two motions.

Fig. 1. Example of setup for the synchronization problem with independently moving
cameras. The blimp and the parallelepipeds represent, respectively, a moving object
and a static background.

In addition to the previous contribution, a new method that synchronizes two
video sequences acquired by static or jointly moving cameras that see (possi-
bly) different parts of a common rigidly moving object is also presented. This
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method is closely related to the one mentioned in the previous paragraph, and is
introduced first in the paper as it serves as a starting point for the more general
case of independently moving cameras. The assumptions about the intrinsic pa-
rameters, extrinsic parameters, and fields of view of the cameras are the same as
before. In this case, the motion of the object with respect to each camera can be
used directly as clue for the synchronization, due to the constraints imposed on
the motion of the cameras. A study of the uniqueness of the solutions obtained
with this method is also presented.

The two video sequences, which are the only available data, are assumed to
be acquired by cameras with the same frame rate, thus a single temporal offset
between them is considered. This is without loss of generality since the multirate
problem can be tackled by interpolating the measurements of the features in the
video acquired with the lowest frame rate (note that typical object motions are
smooth). The strategies proposed in this paper can be used after this resampling.

1.3 Notation and Paper Organization

In this document, the identity matrix with dimensions k × k is denoted Ik, and
0k×n is used to represent a matrix of zeros with k lines and n columns. The
notation ||v|| denotes the Euclidean norm of the vector v and [v]× is used to
represent the skew-symmetric matrix obtained from a given vector v ∈ R

3. This
matrix is such that [v]×s = v × s, for any vector s ∈ R

3, where × represents
the cross-product. For a generic rotation matrix R ∈ SO(3), the corresponding
unit quaternion is given by q = [sin(θ/2)vT cos(θ/2)]T , where θ and v denote,
respectively, the associated non-negative angle of rotation and the unit Euler
axis. These quantities are such that R = e[v]×θ.

The remaining of this paper is organized as follows. A new algorithm that
synchronizes video sequences acquired by static or jointly moving cameras is
presented in section 2, as well as a study of the object trajectories that lead to
a unique identification of the correct temporal offset. This algorithm is gener-
alized for independently moving cameras in section 3. In section 4, a strategy
that recovers the motion of an object from the time evolution of the images of
its features is described, and in section 5 experimental results illustrating the
performance of the proposed synchronization algorithms are presented. Finally,
concluding remarks are provided in section 6.

2 Static and Jointly Moving Cameras

In this section, the synchronization of static or jointly moving cameras, when
no correspondences between the features tracked in the two videos exist, is ad-
dressed. Instead of explicitly using the features to solve the synchronization
problem, the rigid body transformations that explain their motion in the refer-
ence frame of each one of the cameras are used.

Let Xi(k) ∈ R
3, for k ∈ [k0, k0 + F ], where k0 and k0 + F correspond to

the times of acquisition of the first and final frames of the videos, denote the
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3D coordinates of an object feature expressed in the reference frame of camera
i, i = 1, 2, at the time of the acquisition of the k-th frame. These coordinates
can be obtained from the coordinates of the same feature at k0 as Xi(k) =
Ri(k)Xi(k0) + Ti(k), i = 1, 2, for all k ∈ [k0, k0 + F ], where Ri(k) ∈ SO(3) and
Ti(k) ∈ R

3 denote, respectively, rotation matrices and translation vectors that
describe the evolution in time of the coordinates of object features expressed in
the reference frame of camera i.

Since the cameras are static or jointly moving, the relative inter-camera ex-
trinsic parameters are constant, i.e., there exist a constant rotation matrix and
a constant translation vector that transform coordinates expressed in the refer-
ence frame of camera 1 into the one of camera 2, similarly to what happens in
the hand-eye calibration problem, see [7]. If these rotation and translation are
denoted R ∈ SO(3) and T ∈ R

3, respectively, then it is possible to show that
X2(k) = RR1(k)R

TX2(k0) +RT1(k) + (I3 −R2(k))T , and consequently

R2(k) = RR1(k)R
T and T2(k) = RT1(k) + (I3 −R2(k))T , (1)

for all k ∈ [k0, k0+F ], when the two videos are synchronized. These expressions
are not valid for unsynchronized videos, except in the cases detailed in section 2.2.

2.1 Video Synchronization

There are several methods that can be used to track a set of features belonging
to an object moving on a video, being one of the most used the KLT feature
tracker [15]. By combining such strategies with algorithms that recover structure
and motion from image sequences, see [8] and [18], it is possible to retrieve the
motion of the object, apart from a non-negative scaling factor in the magnitude
of its translational component. More details about this procedure are provided
in section 4. By applying this strategy to the two video sequences, the quanti-
ties R1(k), α1T1(k), R2(k), and α2T2(k), are obtained for all k ∈ [k0, k0 + F ].
The constants α1 and α2 are non-negative scalars that account for the scaling
ambiguity in the magnitude of the translation of the moving object.

According to the discussion above, for unsynchronized videos the expressions
in (1) have the form

R2(k
′) = RR1(k)R

T (2)

α2T2(k
′) = RT1(k) + (I3 −R2(k

′))T , (3)

for all k ∈ [k0, k0 + F ], with k′ = k + δ, where δ denotes the temporal offset
between the two sequences. This offset is considered to belong to a given interval,
δ ∈ [−Δ,Δ], with Δ ≤ F positive and known. Even though the two videos are
unsynchronized, they are assumed to have at least F +1 frames acquired at the
same time instants. In the expressions, α1 is considered to be the unit. This is
without loss of generality, as there is an overall ambiguity in the magnitude of
the two terms of equation (3).

If quaternions are used to parameterize the attitude associated with the ro-
tation matrices in (2), this expression takes the form q2(k

′).q = q.q1(k), where
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“.” denotes quaternion multiplication, and q2(k
′), q1(k), and q, are the unit

quaternions (quaternions with unit norm) associated with R2(k
′), R1(k), and

R, respectively (see [12] for details about the use of quaternions to represent
rotations and section 1.3 for details about the notation used to represent quater-
nions). This expression can be written as

M(q1(k), q2(k
′))q = 04×1, (4)

with M(q1(k), q2(k
′)) =

[
Ψ(q2(k

′)) − Ξ(q1(k)) q2(k
′) − q1(k)

]
. For a given

quaternion g = [wT g4]
T , the matrices Ξ(g) and Ψ(g) have the form

Ξ(g) =

[
g4I3 + [w]×

−wT

]
and Ψ(g) =

[
g4I3 − [w]×

−wT

]
, (5)

where w ∈ R
3 is a vector and g4 ∈ R a scalar, see [3].

If (3) is also written as a function of the unit quaternion q, we have that

α2T2(k
′) = ΞT (q)Ψ(q)T1(k) + (I3 −R2(k

′))T , (6)

as R = ΞT (q)Ψ(q), see [3]. The use of quaternions in this paper allows avoiding
singularities in the representation of rotations, see [12].

By combining (4) and (6), the synchronization problem for static or jointly
moving cameras can be cast into the form of the minimization problem

δ̂ = argmin
δ

Es(δ), (7)

where δ̂ denotes the estimated temporal offset and Es(δ) is the error function

Es(δ) = min
(q, T, β2)

μRER(δ, q) + μTET (δ, q, T, β2) + μq(q
T q − 1)2, (8)

with μR, μT , and μq, positive weighting coefficients. The last term in the ex-
pression forces ||q|| to be the unit and the other two are obtained from

ER(δ, q)=

k0+F−Δ∑

k=k0+Δ

||M(q1(k), q2(k + δ))q||2 and

ET (δ, q, T, β2)=

k0+F−Δ∑

k=k0+Δ

||β2
2T2(k + δ)− ΞT (q)Ψ(q)T1(k)− (I3 − R2(k + δ))T ||2.

The scalar β2 is used to guarantee that α2, with α2 = β2
2 , is not negative.

The optimization problem in (8) is a nonlinear least-squares problem due to
the nonlinear dependence of ET (δ, q, T, β2) on q and β2, thus it can be solved
using the Levenberg-Marquardt method [10]. This problem transforms into a
linear least-squares problem if α2 is used and if R, in (3), is considered to be
a generic constant matrix P ∈ R

3×3. Linear constraints on the trace of P and
on the l1 and l∞ norms of its line and column vectors are imposed to guarantee
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that P is close to a rotation matrix, see [5] for details about these norms. If this
relaxation is used and if the estimate found for P , by solving the linear version
of the problem, is approximated by a rotation matrix, an initial guess for q, T ,
and β2, is easily found. This approximation can be obtained using the algorithm
proposed in [14], which can be used to approximate a given matrix by the closest
rotation matrix in the least-squares sense.

The temporal offset between the two videos is the one that solves (7), and is
found by evaluating the error function in (8) for all the offsets in a given range.

2.2 Uniqueness of Solution

There are situations in which the motion of the object does not have enough
information for the synchronization process (imagine for instance that the object
is stopped or moves with constant velocity). In these cases, the solution of the
minimization problem introduced in the previous section is not unique, i.e., there
are several temporal offsets that minimize the error function in (8).

According to (2) and (3), it is possible to conclude that the solution of the
optimization problem in (7) is unique in terms of the temporal offset δ (meaning
that Es(δ) is null only for the correct offset), if and only if there not exist a non-
negative constant scaling factor α, a constant rotation matrix R, and a constant
translation vector T , that verify such equations for some temporal offset, different
from the real δ. The trajectories of the objects that violate this condition are
summarized in Lemma 1, where θi(k) ∈ R and vi(k) ∈ R

3 are used to denote,
respectively, the non-negative rotation angle and the corresponding Euler axis
associated with Ri(k), for all k ∈ [k0−Δ, k0+F +Δ]. The conditions presented
on the lemma depend on Ti and Ri, but they do not need to be tested for both
i = 1 and i = 2. It is enough to choose one of the cameras, for instance camera
1, and test if T1 and R1 verify any of such conditions.

Lemma 1. The solution of the optimization problem presented in (7) is unique
if and only if none of the following three conditions are met for some non-null
δ verifying |δ| ≤ Δ:

1. θi(k) = 0 for all k ∈ [k0 + δ1, k0 + F + δ2] and there exist a non-negative
constant scalar α and a constant rotation matrix R such that αTi(k + δ) =
RTi(k), for all k ∈ [k0, k0 + F ].

2. θi(k) is periodic with period |δ| for k ∈ [k0 + δ1, k0 + F + δ2], the direction
of θi(k)vi(k) is constant in the same interval, and there exist a non-negative
constant scalar α and a constant rotation matrix R such that θi(k+ δ)vi(k+
δ) = Rθi(k)vi(k), for all k ∈ [k0, k0 + F ], and α [Ti(k + 2δ) − Ti(k + δ)] =
R [Ti(k + δ)− Ti(k)], for all k ∈ [k0 − δ1, k0 + F − δ2].

3. θi(k) is periodic with period |δ| for k ∈ [k0+ δ1, k0+F + δ2], the direction of
θi(k)vi(k) is not constant in the same interval, and there exist a non-negative
constant scalar α, a constant vector T , and a constant rotation matrix R such
that

θi(k + δ)vi(k + δ) = Rθi(k)vi(k)

αTi(k + δ) = RTi(k) + (I3 −Ri(k + δ))T , for all k ∈ [k0, k0 + F ].
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In the previous expressions, δ1 = min [δ, 0] and δ2 = max [0, δ].

The conditions presented on the lemma can be easily tested for a given tra-
jectory of the moving object. The procedure used to test them and the proof of
the lemma are omitted here due to space constraints.

3 Independently Moving Cameras

When videos are acquired with independently moving cameras, tracking features
on a single rigidly moving object is not enough for the synchronization. This is
because the projection of such 3D features into acquired images results both from
the motion of the object, which includes information for the synchronization, and
from the motion of the camera, which does not. In this situation, features on a
second rigidly moving object, for instance a static background, must be used.
If the motion of this object is independent from the one of the first object, the
relative motion between the two objects has information for the synchronization.

Let c0M j
i (k) ∈ R

4, for k ∈ [k0, k0 + F ], denote the homogeneous coordinates
of a point of the j-th object, j = 1, 2, at the time of acquisition of the k-th
frame. The superscript c0 and the subscript i indicate that these coordinates
are expressed in the reference frame {c0} of camera i, i = 1, 2, at the time of
acquisition of the first frame k0 of the video sequence. The evolution in time of
the coordinates of this point is given by c0M j

i (k) = gji (k)
c0M j

i (k0), where gji (k)
denotes a homogeneous transformation. Moreover, let ck

c0gi(k) denote another
homogeneous transformation, which converts coordinates of points expressed in
{c0}, into the coordinates of the same points expressed in {ck}. Here, {ck} is
used to identify the reference frame of camera i at the time of acquisition of
frame k. This transformation represents the motion of camera i. If these two
transformations are combined, a new transformation gT

j
i (k) that includes both

the motion of the j-th object and the motion of the i-th camera, results

ckM j
i (k) =

ck
c0 gi(k) g

j
i (k)︸ ︷︷ ︸

gT
j
i (k)

c0M j
i (k0).

This transformation relates c0M j
i (k0), the homogeneous coordinates in the initial

time instant of points of object j expressed in {c0}, with ckM j
i (k) ∈ R

4, their
homogeneous coordinates at the time of acquisition of frame k expressed in {ck}.

From the three aforementioned transformations, only gT
j
i (k) can be obtained

from the available features (apart from a non-negative scaling factor, as dis-
cussed in section 3.1), for all k ∈ [k0, k0 + F ]. Thus, any relation used for
the synchronization process has to be based on such transformation. Consider,
for instance, the homogeneous transformation gT

1
i (k) = ck

c0gi(k) g1i (k), asso-
ciated with the motion of object 1 with respect to camera i, which can be
written as gT

1
i (k) = ck

c0gi(k) g2i (k) [g
2
i (k)]

−1 g1i (k), since g2i (k)[g
2
i (k)]

−1 = I4. If
[g2i (k)]

−1 g1i (k), which does not depend on the motion of the cameras, is denoted
by gi(k), the previous expression can be rearranged in the form

gi(k) = [gT
2
i (k)]

−1 gT
1
i (k). (9)
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If the homogeneous transformation from the reference frame of camera 1, at
the initial instant, to the reference frame of camera 2, at the same instant, is
denoted g, it is easy to show that gj2(k) = g gj1(k) g

−1, j = 1, 2, and consequently

g2(k) = g g1(k) g
−1, (10)

as gi(k) = [g2i (k)]
−1 g1i (k). When the two video sequences are synchronized, this

expression is valid for all k ∈ [k0, k0 + F ].
If the rotations and translations associated with g and gi(k), i = 1, 2, are

denoted by R ∈ SO(3) and T ∈ R
3, and by Ri(k) ∈ SO(3) and Ti(k) ∈ R

3,
respectively, then (10) can be cast into the form of (1). The difference is that
in section 2, Ti(k) was determined using structure and motion strategies, which
is not possible in this case. Here, the translational components of gT

j
i (k) can

also be determined using structure and motion strategies, thus they are known
up to a scaling factor, but Ti(k) cannot. For independently moving cameras,
Ti(k) is obtained using (9). This procedure induces some structure on Ti(k),
which cannot be modelled with a single scaling factor. This is why the strategy
proposed in section 2.1 cannot be used for independently moving cameras.

3.1 Video Synchronization

By using the strategy described in the beginning of section 2.1, it is possible to
retrieve the values of RT

j
i (k) and αj

iTT
j
i (k), with i = 1, 2, and j = 1, 2, for all k ∈

[k0, k0+F ]. The rotation RT
j
i (k) and translation TT

j
i (k) are the ones associated

with the homogeneous transformation gT
j
i (k), and αj

i is a non-negative constant
that accounts for the ambiguity in the magnitude of the translation of the j-th
object, when it is estimated using the features observed in camera i.

According to the discussion above and to (9), we have that

Ri(k) = [RT
2
i (k)]

TRT
1
i (k)

Ti(k) = α1
i [RT

2
i (k)]

TTT
1
i (k)︸ ︷︷ ︸

h1
i (k)

−α2
i [RT

2
i (k)]

TTT
2
i (k)︸ ︷︷ ︸

h2
i (k)

,

for all k ∈ [k0, k0+F ] and for i = 1, 2. Note that the use of a single scaling factor
is not enough to model the structure of the ambiguity in the determination of
Ti(k). The vectors h

1
i (k) ∈ R

3 and h2
i (k) ∈ R

3, introduced in the expression, are
used in this section with the single purpose of becoming the notation clearer.

If the expression in (10) is separated into its rotational and translational parts,
it takes the following form for unsynchronized video sequences

R2(k
′) = RR1(k)R

T (11)

α1
2h

1
2(k

′)− α2
2h

2
2(k

′) = R
[
h1
1(k)− α2

1h
2
1(k)

]
+ (I3 −R2(k

′))T , (12)

for all k ∈ [k0, k0 + F ], and with k′ = k+ δ, where δ is as defined in section 2.1.
Note that α1

1 was omitted from (12) as it is assumed to be the unit. This is
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without loss of generality since there is an overall ambiguity in the magnitude
of the two terms of equation (12).

If quaternions are used, the equation in (11) reduces to the form of (4), see
details in section 2.1, where q1(k), q2(k

′), and q, are the unit quaternions asso-
ciated, respectively, with the rotation matrices R1(k), R2(k

′), and R, redefined
in this section for the case of independently moving cameras.

The expression in (12) can also be written as a function of the quaternion
q, associated with the rotation R that relates the reference frames of the two
cameras in the initial time instant. In this case, this expression takes the form
α1
2h

1
2(k

′)−α2
2h

2
2(k

′) = ΞT (q)Ψ(q)
[
h1
1(k)− α2

1h
2
1(k)

]
+(I3−R2(k

′))T , where the
matrices Ξ(q) and Ψ(q) are as defined in (5).

By combining the previous expression with the one relating the rotations
perceived from both sequences, the synchronization problem for independently
moving cameras can be cast into the form of the minimization problem

δ̂ = argmin
δ

Em(δ), (13)

where δ̂ denotes the estimated temporal offset and Em(δ) is the error function

Em(δ) = min
(q, T, β1

2 , β
2
2 , β

2
1)
μRER(δ, q)+μTET (δ, q, T, β

1
2 , β

2
2 , β

2
1)+μq(q

T q−1)2, (14)

with μR, μT , and μq, positive weighting coefficients and

ER(δ, q) =

k0+F−Δ∑

k=k0+Δ

||M(q1(k), q2(k + δ))q||2

ET (δ, q, T, β
1
2 , β

2
2 , β

2
1) =

k0+F−Δ∑

k=k0+Δ

||(β1
2)

2h1
2(k + δ)− (β2

2)
2h2

2(k + δ)−

−ΞT (q)Ψ(q)
[
h1
1(k)− (β2

1)
2h2

1(k)
] − (I3 −R2(k + δ))T ||2.

The scalars β1
2 , β

2
2 , and β2

1 are used in these expressions to guarantee that α1
2,

α2
2, and α2

1 (with α1
2 = (β1

2)
2, α2

2 = (β2
2)

2, and α2
1 = (β2

1)
2) are not negative.

The optimization problem in (14) is a nonlinear least-squares problem due to
the nonlinear dependence of ET (δ, q, T, β

1
2 , β

2
2 , β

2
1) on q, β1

2 , β
2
2 , and β2

1 , thus it
can be solved using the Levenberg-Marquardt method [10]. An initial guess for
the unknowns q, T , β1

2 , β
2
2 , and β2

1 , can be obtained by relaxing the problem,
similarly to what was done in the end of section 2.1.

The temporal offset between the two videos is the one that solves (13), and is
found by evaluating the error function in (14) for all the offsets in a given range.
Moreover, note that with the proposed strategy it is possible to estimate the
relative scales between the two objects. This is only possible because two cam-
eras are used. In the monocular multi-body structure-from-motion problem, for
instance, each reconstructed object has a different unknown scale, thus objects
are distorted with respect to each other, see [13].

In this work, the correspondence between the two video sequences, in terms
of which trajectories belong to which objects, is assumed to be unknown. A set
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of features in one camera may correspond to any of the two sets in the other
camera, thus two possible combinations between the sets are possible (once an
association is assumed, the other is implicitly defined). The correct combination
can be found by solving the previous optimization problem for the two cases,
and choosing the one that leads to the minimum value for Em(δ).

4 Object Motion Recovery

There are several methods to retrieve structure and motion from a sequence of
images, see [8]. In this work, a strategy based on the concept of epipolar geometry
is used to estimate the rotation matrices and translation vectors that define the
motion of a set of 3D rigidly moving features, see [6].

Given the projection of a set of 3D features into two images, the essential
matrix (the intrinsic parameters of the cameras are known) that relates the two
views can be obtained using different strategies, depending on the number of
available features, see examples in [6] and [17]. By using such methods, the es-
sential matrices that relate the coordinates of features at a given time instant
with their coordinates in the initial instant result. Moreover, if the standard
algorithms described in [6] are used, these matrices can be converted into ro-
tations and normalized translations of the object with respect to that instant.
These rigid body transformations do not enforce a globally consistent geometry,
as only the directions of the translations are retrieved, rather than the full 3D
translation vectors. Strategies that enforce such global consistency are described
in [8] and [18]. In this work, a modified version of such approaches, not described
here in detail due to space constraints, is used. It is based on the alignment of 3D
point clouds, and leads to translation vectors that are defined up to an overall
ambiguity (in this case, a non-negative scaling factor) in their magnitude. This
ambiguity cannot be removed unless some metric information about the scene
is considered to be available, which is not the case.

5 Experimental Results

In this section, experimental results illustrating the performance of the proposed
methods are presented, as well as a comparison with a state-of-the-art approach.

The videos were acquired with cameras of regular mobile phones, at 29 fps,
and images with the spatial resolution 960× 540 pixel were used. The intrinsic
parameters of the cameras were calibrated using the toolbox in [1].

The features used in the synchronization were selected manually in the first
frame of each sequence, and then tracked along the videos with the KLT feature
tracker [15]. No strategy to deal with occlusions or outliers was implemented,
as this is not the focus of this work, thus good features must be selected to
guarantee that the motion recovery algorithm performs properly.

For the proof-of-concept experiments presented in this section, in which the
video sequences are small, Δ = 10 frames was considered. Larger values for Δ
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can be used, specially for long sequences. The ground truth information was
obtained using a photo-flash to mark some of the frames, as suggested in [21].

Two experiments are presented. In the first, two cameras were mounted on
the same rigid platform, in such a way that their fields of view do not intersect
(they were facing opposite directions). The inter-camera extrinsic parameters
between the two remain constant over time, and features on the static back-
ground are used. This problem is the same as the more common situation where
the cameras record an object that is moving between the two. In the second
experiment, a tram was recorded with independently moving cameras, and the
static background is used as a second object. The strategies proposed in this
work were implemented using μT = 1, μR = 10, and μq = F .

The results obtained with our algorithms are compared to the ones obtained
with the method proposed in [22]. This method was developed to synchronize
videos acquired with static or jointly moving cameras, when no correspondence
between the features tracked in both videos exists. It consists in using an heuristic
to examine the effective rank of a matrix constructed from the measurements.
The heuristic proposed in the paper and the suggested threshold were used in the
implementation of this algorithm. The comparisons with [22] serve two purposes:
i) understand how our algorithm for static or jointly moving cameras compares
to a state-of-the-art approach, and ii) confirm that such approach cannot be
used to synchronize videos acquired with cameras that move independently.

The videos used in the first experiment have 121 frames and were obtained
with two cameras moving jointly in the center of a public square. The first and
final frames of the two sequences are depicted in Fig. 2, with the motion of the

(a) Initial frame of sequence 1. (b) Initial frame of sequence 2.

(c) Final frame of sequence 1. (d) Final frame of sequence 2.

Fig. 2. Initial and final frames of the two videos in the experiment with jointly moving
cameras. Green dots represent the evolution over time of features on the background,
and black dots identify their position at the time of acquisition of the presented frames.
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features used in the synchronization (that results from the motion of the platform
in which the cameras were installed) superimposed on them. No correspondence
between the features tracked in the two sequences exists, as the fields of view of
the cameras do not intersect at any point.
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(b) Method proposed in [22].

Fig. 3. Error functions for the experiment with jointly moving cameras (videos pre-
viously synchronized using the ground truth obtained by marking some of the frames
with a photo-flash). The dots in red identify the minima of the functions.

A comparison between the approach presented in section 2 and the one pre-
sented in [22] can be found in Fig. 3. In particular, the values of the error func-
tions Es(δ) and Ew(δ), proposed respectively in section 2.1 of this document
and in [22], are presented for each one of the considered temporal offsets. Both
methods correctly identify the temporal offset between the two video sequences
(δ = 0 as the videos were previously synchronized using the ground truth).

(a) Initial frame of sequence 1. (b) Initial frame of sequence 2.

(c) Final frame of sequence 1. (d) Final frame of sequence 2.

Fig. 4. Initial and final frames of the two sequences in the experiment with indepen-
dently moving cameras. The evolution along time of features in the tram and features in
the background are represented in green and blue, respectively. The black dots identify
the position of the features at the time of acquisition of the presented frames.



202 T. Gaspar, P. Oliveira, and P. Favaro

The sequences used in the experiment with independently moving cameras
have 96 frames. As before, there is no time offset between the two as they were
previously synchronized using the ground truth. The first and final frames of
the two videos are depicted in Fig. 4, with the time evolution of the features
used in the synchronization superimposed on them. The motion of the features
in blue result from the motion of the users that were holding the cameras. No
correspondence between the features tracked in both sequences exists, as the
cameras were in opposite sides of the tram (note for instance the open/closed
door or the differences in the background). The values of the error functions
Em(δ) and Ew(δ), proposed respectively in section 3 of this document and in [22],
are presented in Fig. 5, for each one of the considered time offsets. Our method
identifies the temporal offset (δ = 0) between the two sequences successfully,
whereas the methods proposed in [22] does not. This was expected, since this
algorithm was proposed for the case of static or jointly moving cameras.

The two curves in Fig. 5(a) correspond to the two combinations between the
sets of features acquired by the cameras. The combination associated with the
green curve is the correct, as it minimizes the minimum of the error function.
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Fig. 5. Error functions for the experiment with independently moving cameras (videos
previously synchronized using the ground truth obtained by marking some of the frames
with a photo-flash). The dots in red identify the minima of the functions. The two curves
in (a) result from evaluating Em(δ) for the two possible combinations between the set
of features associated with the moving object and with the static background.

6 Conclusions

In this paper, the video synchronization problem for cameras with fields of view
that may not intersect was addressed. Our approach differs from previous meth-
ods as it can deal with independently moving cameras. Features on two rigidly
moving objects with independent motions are tracked in both sequences, and
used to retrieve the relative motion between the objects, which is used as clue
for the synchronization. A similar approach is used to solve this problem for the
particular case of static or jointly moving cameras. Both methods were tested
and validated with real data, and the strategy proposed for static or jointly
moving cameras was shown to perform similarly to a state-of-the-art approach.
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