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Abstract

In this paper we propose a novel solution to uncalibrated
photometric stereo. Our approach is to eliminate the so-
called generalized bas relief (GBR) ambiguity by exploit-
ing points where the Lambertian reflection is maximal. We
demonstrate several noteworthy properties of these max-
ima: 1) Closed-form solution: A single diffuse maximum
constrains the GBR ambiguity to a semi-circle in 3D space;
2) Efficiency: As few as two diffuse maxima in different im-
ages identify a unique solution; 3) GBR-invariance: The
estimation error of the GBR parameters is completely inde-
pendent of the true parameters. Furthermore, our algorithm
is remarkably robust: It can obtain an accurate estimate
of the GBR parameters even with extremely high levels of
outliers in the detected maxima (up to 80% of the observa-
tions). The method is validated on real data and achieves
state-of-the-art results.

1. Introduction
The Lambertian model remains one of the most widely

adopted models for diffuse reflectance in computer vision.
Despite such a widespread use, this model has not been
exploited to its full potential. In this paper, we show that
locations of maximal diffuse brightness carry very useful
geometrical information about shape and light. We demon-
strate their potential in the case of uncalibrated photomet-
ric stereo, where no prior knowledge about the illumina-
tion, geometry, and reflectance is available. Recall that in
uncalibrated photometric stereo, in absence of light calibra-
tion, the normal field of the object can be obtained from
the Lambertian reflectance model only up to a 9-parameter
linear ambiguity [12]. This ambiguity can be further re-
duced to 3 parameters, the so-called generalized bas-relief
ambiguity (GBR) [4], via the integrability constraint, which
enforces that a valid surface can be reconstructed from the
estimated normal field.
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Figure 1. GBR ambiguity solved via LDR constraints. The inte-
grability constraint alone allows the GBR parameters (µ, ⌫,�) to
take any value in the 3D space. A single LDR maximum constrains
the GBR parameters to a semi-circle. Other LDR maxima define
other semi-circles all intersecting at the true GBR parameters.

Despite its apparent simplicity, finding a way to fix the
GBR parameters with assumptions as realistic as possible
is still an open research problem. We make the assump-
tion that one can detect and exploit maxima of the Lam-
bertian diffuse reflectance (LDR) component (as opposed
to the specular reflectance component [7, 8, 16, 19] or the
temporal maxima [15]). We show that each of these maxima
restricts the space of GBR ambiguities to a semi-circle in 3-
D space, and that as few as two maxima from differently
illuminated images yield a unique solution for the GBR pa-
rameters (see Fig. 1). The semi-circles can be efficiently
computed in closed-form (see sec. 5.1).

A second fundamental challenge that was not addressed
so far is that the estimation error of the GBR parameters
should not depend on the true parameters, a condition that
we call GBR-invariance. In other words, an algorithm
should yield the same estimated parameters, regardless of
which solution satisfying the integrability constraint one
starts from. Current state-of-the-art methods suffer from
this shortcoming and obtain a stable estimate by running
their algorithms several times with different initial solutions
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and by averaging all the estimates. In contrast, our algo-
rithm needs to be run only once as we demonstrate in sec. 5.

2. Prior Work
Photometric stereo [24] is a method for estimating shape

and reflectance of an object, using three [24] or more [27]
images of a static object taken from a fixed viewpoint and
under different lighting conditions. When the illumination
directions and intensities are known, the problem can be
solved via a linear system.1 When no prior knowledge about
the illumination, geometry, and reflectance is available, the
problem is called uncalibrated photometric stereo (UPS).
UPS has been addressed with a variety of techniques that
make explicit or implicit use of the GBR ambiguity. For
instance, in [2], the GBR ambiguity is solved by minimiz-
ing the entropy of the albedo distribution following the ar-
gument that incorrect GBR parameters result in spreading
albedo values. This approach relies on the assumption that
albedos are based on a few intensity values. A similar phi-
losophy is to group the normal-albedo distribution based on
color appearance [21]. The use of color, when available,
allows clustering based on the chromaticity. Another exam-
ple is to introduce additional constraints to determine the
GBR ambiguity by exploiting specularities of glossy sur-
faces [7, 8]. This method relies on the ability to correctly
detect specularities and on the assumption that objects in the
scene have a non negligible specular component. Lagger
and Fua [16] notice that both specular and diffuse maxima
provide useful information about the illumination direction.
However, they discard diffuse maxima and focus only on
specular ones. In other investigations, the GBR ambigu-
ity has been eliminated by exploiting inter-reflections [6],
by considering the Torrance and Sparrow reflectance model
[10] or by considering specular and glossy surfaces [23].
Other approaches instead exploit shadows [18, 14], dimen-
sionality reduction [20], the bilateral symmetry of isotropic
BRDFs [1] or consider changing the viewpoint and exploit
the Helmoltz reciprocity principle [29]. Hertzmann et al.
[13] use a reference object in the scene to generate intensity-
normal look-up tables, and can handle fairly general re-
flectance functions (more precisely, all materials of a single
object must be a linear combination of a given basis of ma-
terials). A recent work of Chandraker et al. [5] exploits a
particular image acquisition setup and spatial and temporal
image derivatives to obtain an uncalibrated photometric in-
variant that can deal with a general isotropic BRDF. Other
methods generalize the lighting environment and implicitly
extend the Lambertian model so that different normals see
a different portion of the illumination hemisphere [3].

1This result holds under the Lambertian image formation model, or-
thographic projection, by considering distant point light sources and when
shadows and interreflections can be ignored.

Contributions. We introduce LDR maxima to solve the
GBR ambiguity in UPS. Our main contributions are:

• A closed-form solution for a single LDR maximum;

• A robust estimator to find the GBR parameters that tol-
erates up to 80% incorrect LDR maxima;

• A proof that the solution is GBR-invariant.
Finally, we experimentally demonstrate that our method
handles a wide range of real-world scenes, is the most com-
putationally efficient UPS algorithm, and achieves state-of-
the-art results.

3. Photometric Stereo
Photometric stereo is the task of recovering the surface of

an object with normal field n, given K input images taken
from a fixed viewpoint, and illuminated by known distant
point light sources with direction l. We denote the unit-
normal to the surface at the pixel index p with np 2 S2 for
p = 1, . . . , P , where P is the total number of pixels in an
image. Similarly, we denote with lk 2 S2 the unit-normal
corresponding to the k-th illumination direction. Now, let
us call Lk = eklk the light vector, where ek denotes the
light intensity. Also, let Np = ⇢pnp represent the generic
normal vector and ⇢p be the albedo coefficient. Then, the
intensity measured at a pixel index p with illumination k for
the Lambertian case (and under the assumption of a linear
response of the camera and orthographic projection) is:

Ip,k = ⇢phnp, lkiek = NT
p Lk (1)

where h·, ·i denotes inner product and (·)T the transpose of a
vector (or of a matrix). By sorting the pixels in lexicograph-
ical order we can rearrange all the generic normal vectors in
a matrix N = [N1 . . . NP ] 2 R3⇥P , which we call nor-
mal matrix; similarly we can rearrange the light vectors into
a matrix L = [L1 . . . LK ] 2 R3⇥K , which we call light
matrix. Then, we can write eq. (1) in the following compact
matrix form:

I = NT L (2)

where {I}p,k = Ip,k. If light directions and intensities are
given, solving photometric stereo is equivalent to solving
the linear system (2) in the unknown normal matrix N. Fi-
nally, extracting the albedo ⇢p from the generic normal vec-
tors Np can be done via ⇢p = kNpk2.

4. Uncalibrated Photometric Stereo
If the light matrix is unknown, N and L can be obtained

up to a linear ambiguity G 2 GL(3) [12], where:

I = NT

identityz }| {
G�1GL. (3)



It can be shown [4] that if we impose the integrability con-
straint, then the ambiguities take the form

G =

2

4
1 0 0

0 1 0

µ ⌫ �

3

5 (4)

where the 3 parameters � 6= 0, µ, ⌫ 2 R represent the group
of GBR transformations. In this formulation it is apparent
that solving UPS amounts to fixing these 3 parameters. For
simplicity, we also fix the sign of � to be positive. De-
fine ˆN

.
= G�TN, the pseudo-normals, and ˆL

.
= GL, the

pseudo-lights. An initial pair ( ˆN, ˆL) can be computed with
the algorithm of [28]. Our task is to find ˆ�, µ̂, and ⌫̂ such
that ˆGT

ˆN = N and ˆG�1
ˆL = L where

ˆGT
=

2

4
1 0 µ̂
0 1 ⌫̂
0 0

ˆ�

3

5 and ˆG�1
=

2

4
1 0 0

0 1 0

� µ̂
�̂

� ⌫̂
�̂

1
�̂

3

5 .

(5)

5. Lambertian Diffuse Reflectance Maxima
The model in eq. (1) is an approximation of the true im-

age formation process. In practice, real scenes have non
Lambertian objects, lights may lie close to the objects and
have extended surfaces, and other effects such as specular-
ities, shadows, inter-reflections, and noise need to be taken
into account. We separate the input images into a com-
ponent due to the Lambertian reflectance and one due to
the specular reflectance by applying the recent low-rank +
sparse outliers model [17, 26] (see sec. 6).

We assume that the scene contains curved objects
(with positive Gaussian curvature) such that there exists a
nonempty set Sk of spatial maxima (where “spatial” refers
to the image domain) of the inner product hnp, lki, for a
given k-th illumination. We call such points Lambertian dif-
fuse reflectance maxima. Notice that we have a maximum
only when np and lk point in the same direction. Since both
vectors are unit-normal, they must also coincide.

5.1. A Closed-Form Solution
Suppose that the set Sk is given. For each k, an LDR

maximum at p 2 Sk constrains the GBR ambiguity to the
following set

(µ̃, ⌫̃, ˜�) 2 argmax

µ̂,⌫̂,�̂

*
ˆGT

ˆNp

k ˆGT
ˆNpk

,
ˆG�1

ˆLk

k ˆG�1
ˆLkk

+
; (6)

by using Ip,k = h ˆGT
ˆNp, ˆG�1

ˆLki, one obtains

(µ̃, ⌫̃, ˜�) 2 arg min

µ̂,⌫̂,�̂
k ˆGT

ˆNpkk ˆG�1
ˆLkk. (7)
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Figure 2. GBR ambiguity solved via LDR constraints. Each seg-
ment is the set of solutions in the parameters µ̃ and ⌫̃ for one LDR
maximum. Segments must intersect at the correct GBR solution.

Proposition 5.1 The set of maxima in (µ̃, ⌫̃) of eq. (8) is
the segment between the 2-D points [µ0 ⌫0]T and [µ1 ⌫1]T ,
where

µ0 =
�l̂22,kn̂1,p + l̂1,k l̂2,kn̂2,p + l̂1,k l̂3,kn̂3,p

n̂3,p(l̂21,k + l̂22,k)

⌫0 =
l̂1,k l̂2,kn̂1,p � l̂21,kn̂2,p + l̂2,k l̂3,kn̂3,p

n̂3,p(l̂21,k + l̂22,k)
(8)

µ1 =�
n̂1,p

n̂3,p
⌫1 = �

n̂2,p

n̂3,p

and we defined ˆLk = [

ˆl1,k ˆl2,k ˆl3,k]T and ˆNp =

[n̂1,p n̂2,p n̂3,p]
T . Given a 2-D point [µ̃ ⌫̃]T = [µ0 ⌫0]T +

(1 � ↵)([µ1 ⌫1]T � [µ0 ⌫0]T ) onto the segment, where
↵ 2 [0, 1], the third GBR parameter is uniquely determined
via

�̃ =
p

↵(1� ↵)
|N̂T

p L̂k|

|n̂3,p|
q

l̂21,k + l̂22,k

(9)

and the trajectory of the 3-D point [µ̃ ⌫̃ ˜�]T in the parameter
↵ 2 [0, 1] forms a semi-circle of radius Ip,k

2|n̂3,p|
q

l̂21,k+l̂22,k
.

Proof. See [9].

The next result tells us how many LDR maxima we need to
solve the GBR ambiguity.

Lemma 5.2 If two LDR maxima correspond to two pseudo-
lights, whose first two components are not proportional to
each other, then the GBR ambiguity can be solved uniquely.

Proof. See [9].

To illustrate the results, we show in Fig. 1 and Fig. 2 how
LDR maxima constrain the GBR parameters segments in
the (µ, ⌫) plane and to semi-circles in the (µ, ⌫,�) space.
All segments or semi-circles intersect at the same point,
which corresponds to the correct solution.

Next, we prove a remarkable result: The estimation er-
ror of the GBR parameters obtained with LDR maxima



does not depend on the true GBR parameters or the initial
pseudo-normals ˆN and pseudo-lights ˆL. In practice, this
means that our method yields the same solution every time
it is run, unlike competing methods (see section 6).

Proposition 5.3 The constraints on the GBR parameters
introduced by an LDR maximum are GBR-invariant.

Proof. See [9].

5.2. Existence of LDR Maxima
One may wonder whether LDR maxima are commonly

found in images. Indeed, degenerate surfaces that do not
generate LDR maxima do exist (e.g., a slope). However,
we experimentally find an average of 251 LDR maxima per
dataset (see section 6). These statistics are very favorable as
only 2 maxima are sufficient to solve UPS.

5.3. Detection and Localization of LDR Maxima
In this section we describe a procedure to detect LDR

maxima. The main idea is that we can do so by detecting
local intensity maxima. In general, however, intensity max-
ima do not correspond to LDR maxima. In fact, detection
of the maxima of Ip,k requires

rIp,k = r⇢pN
T
p lkek + ⇢prNT

p lkek = 0, (10)

while the LDR maxima are determined by

rNT
p lk = 0. (11)

Thus, even small variations of the albedo could result in a
displacement of the detected maximum. However, we show
that an LDR maximum can be found within a small disc
around the detected intensity maximum, whose radius �

depends on the albedo gradient magnitude and the curvature
of the surface.

We approximate the surface of the object around an in-
tensity maximum with a hemisphere. Let

P
.
= [p1 p2

q
R2 � p21 � p22]

T 2 R3, (12)

with p21 + p22  R2, be a point on the hemisphere with ra-
dius R 2 R+. If a pixel index p corresponds to the pixel
coordinates [p1 p2]T , then the normals to this surface re-
gion can be directly defined as Np = P/kPk. Notice that
in this case the correct LDR maximum lies at the pixel co-
ordinates R[l1,k l2,k]T . If [p1 p2]T denotes the detected in-
tensity maximum, we are interested in finding an estimate
of the disc radius � via the distance

� =

����R

l1,k
l2,k

�
�

p1
p2

����� . (13)

Suppose that the surface is Lambertian and we capture an
image with illumination direction lk, where l3,k > 0, then

the measured intensity is Ip,k = ⇢p hP/kPk, lki ek. Detec-
tion of the maxima of Ip,k requires

rIp,k = r⇢p
PT lk
kPk ek + ⇢p

rPT

kPk

✓
Id � PPT

kPk

◆
lkek = 0

(14)

where Id denotes the identity matrix. Notice that since

rPT
=

2

4
1 0 � p1p

R2�p2
1�p2

2

0 1 � p2p
R2�p2

1�p2
2

3

5 (15)

we have rPTP = 0, which, combined with eq. (15), yields
the constraint

r⇢pP
T lk + ⇢prPT lk = 0. (16)

Assume that the ratio between the albedo gradient and the
albedo magnitude is bound by a constant B > 0, i.e.,���r⇢p

⇢p

���  B. Then, we can write

��rPT lk
��
=

����
r⇢p
⇢p

PT lk

���� 
����R

r⇢p
⇢p

����  BR, (17)

where we used the identity kPk = R. Finally, we obtain
�����


l1,k
l2,k

�
�


p1
p2

�
l3,kp

R2 � p21 � p22

�����  BR. (18)

For a reliable detection and localization we consider LDR
maxima that are not too far off the detected maxima.
This means that locally, we can approximate P with
the hemisphere tangent plane at RLk. This means thatp

R2 � p21 � p22 ' Rl3,k and we obtain

� =

����R

l1,k
l2,k

�
�

p1
p2

�����  BR2. (19)

Therefore, the correct localization of LDR maxima will be
a tradeoff between the curvature of the local surface and
the albedo gradient: Surfaces with high curvature can tol-
erate high albedo gradients and, vice versa, surfaces with
small curvature can tolerate little albedo variation. We ex-
perimentally find that � = 1 is a good tradeoff.

Furthermore, as done in [16], we improve the selection
of LDR maxima by discarding maxima that appear at the
same spatial location under different illuminations (2 are
sufficient to decide) as they are generated by the albedo tex-
ture. Third, we discard maxima with low pixel intensities,
i.e., maxima from the k-th input image with intensity less
than (maxp Ip,k �minp Ip,k)/2. We experimentally found
that such maxima tend to be less reliable than those with
high intensity.



Figure 3. Color coding of the estimation error against outliers and
noise ratios. Error levels are shown with solid green lines and the
corresponding values are indicated in the cyan box.

5.4. Dealing with Outliers
In practice, the sets {Sk}k=1,...,K contain many outliers,

due, for instance, to specularities. We take outliers into ac-
count by using a robust estimation procedure.

To simplify the notation, let us define y
.
= [µ ⌫ �]T ,

i.e., the vector of GBR parameters. Let S be the sum
of the cardinalities of the sets {Sk}k=1,...,K . Also, let
{yi}i=1,...,S(S�1)/2 be the set of all the intersections be-
tween any two semi-circles defined by two detected max-
ima lying in one of the sets {Sk}k=1,...,K . We consider the
intersections {yi}i=1,...,S(S�1)/2 as samples of a random
variable Y defining the GBR parameters. We can obtain an
approximation to the distribution fY of the random variable
Y via the empirical distribution

fY(y) ' 2

S(S � 1)

S(S�1)
2X

i=1

� (y � yi) . (20)

Then, the GBR parameters can be chosen as the median ¯y
of the empirical distribution, i.e.,

(µ̃, ⌫̃, ˜�) ⌘ ¯y = argmin

ŷ
EfY [|ˆy � y|] (21)

where EfY denotes the expectation with respect to the dis-
tribution fY.

5.5. Robustness
Because the proposed algorithm can compute the GBR

parameters very efficiently, we can evaluate how well it
can tolerate several levels of outliers and errors in the de-
tected LDR maxima. We show that the algorithm can tol-
erate very high levels of outliers, while it is more sensi-
tive to persistent misalignments between normals and lights.

We synthetically generate a set of K = 12 light direc-
tions. Then, we generate P = 500 maxima by match-
ing each normal to one of the light directions. With ref-
erence to Fig. 3, to simulate outliers in the detected LDR
maxima, we corrupt outliers ratio ⇥P normals. To
simulate errors in the detected LDR maxima, we add to all
the normals uniform noise in the range uniform noise

ratio ⇥[�0.1 + 0.1] (the persistent misalignment). The
performance is computed as the relative error ✏ = ky�ȳk2

kyk2
,

where y is the correct vector of GBR parameters and ¯y the
estimated one. In Fig. 3 we show the results for several out-
lier and noise ratios. To ease visualization we smooth the
error map and then quantize it. The outlier ratio is shown
in the abscissa and ranges from 0% (left) to 100% (right).
Similarly, the uniform noise ratio is shown in the ordinate
axis and ranges from 0% (bottom) to 100% (top). Notice
that the darkest region (bottom-left) denotes no more than
0.3% relative error and it allows up to 75% outliers even
when the remaining 25% of the maxima have around 10%

uniform additive noise.

6. Experiments
To validate our method we use 9 real object datasets:

Redfish and Octopus of 5 images each (courtesy of Neil
Alldrin2); Cat, Buddha, Owl, Horse and Rock of 12 im-
ages each (courtesy of Dan Goldman and Steven Seitz3);
Puppet of 15 images taken in our lab with a Canon 5D
Mark II; Face of 64 images (Yale Face Database [11]). All
the experiments were run with Matlab on a Mac (2.66 GHz
CPU, Intel Core Duo) platform.

Image Acquisition of the Puppet. To take the photos of
the Puppet, we used a Canon 5D Mark II camera and a
30-watt incandescent light source attached on a tripod. We
placed the light source in 15 different positions (far enough
from the object in order to satisfy the distant point light
source assumption) and took 3 photos for each position.
The 3 photos were then averaged to reduce noise. Ambient
image subtraction was also performed. Because the light
source has constant intensity, we scaled each image with a
random scalar between 0.5 and 1.5 (this was done for the
face dataset as well). An object mask was also created by
simple thresholding.

Image Pre-Processing. Eq. (2) dictates that the intensity
matrix I should have rank 3. Because real world data are
affected by noise, shadows, specularities and other non-
Lambertian effects, the rank will be different, typically big-
ger, than 3. Hence, we perform a pre-processing step based

2http://neilalldrin.com/research
3http://www.cs.washington.edu/education/courses/csep576/05wi

/projects/project3/project3.htm



Figure 4. Removal of non Lambertian effects. Left: one of
the input images. Middle: detected non Lambertian components
(shadows and specularities) via the low-rank matrix recovery pre-
processing step. Right: Low-rank and noise-free data to be used
in our algorithm.

on a recent convex optimization approach [17, 26] that re-
covers the low-rank intensity matrix without having any in-
formation about what entries are corrupted:

min

A,E
||A||⇤ + �||E||1 s.t I = A+E (22)

where A is the noise-free low-rank data and E is a sparse
matrix with the outliers. || · ||⇤ and || · ||1 denote the nuclear
and l1 norm respectively. � > 0 is a weighting parameter
that defines the amount of outliers in the data. This param-
eter depends on the input images and, as suggested in [25],
we fix it to � =

p
P

where  is a constant and P is the total
number of pixels of a single input image. We fixed  = 1.7
for all datasets having at least 12 images and  = 3 for
the others. Fig. 4 shows how the pre-processing algorithm
removes shadows and specularities in the case of the Face
dataset.

Implementation Details. We impose the integrability
constraint as described in [28] and the surface pseudo-
normals ˆN and pseudo-lights ˆL are obtained up to the GBR
ambiguity. The initial group of all the LDR maxima is de-
tected by using the built-in Matlab function ”imregional-
max” after applying a small Gaussian smoothing to all the
input images. This function gives as output a set of single
pixels for each image corresponding to the intensity local
maxima. As described in sec. 5.3 we select as local maxima
all pixels in a disc neighborhood of radius 1 pixel. Then, we
discard all local maxima that appear (at least twice) at the
same spatial location for different illumination conditions
and those that have low intensity values.

Results. Because no ground truth data is available for
these datasets, we consider as ground truth for the nor-
mal maps the ones obtained from the calibrated photomet-
ric stereo method. We compare our experimental results
with the state-of-the-art in uncalibrated photometric stereo
[21, 2]. For the accuracy evaluation we consider the mean
angular error of the estimated normals with respect to the

Table 1. Performance comparison with the entropy minimization
(EM) method [2] and the Self Calibrating Photometric Stereo
(SCPS) method [21]. We show the mean (✏) and standard devi-
ation (�) of the angular error of the estimated normal maps.

12 images A/E Rock Buddha Horse Cat Owl
EM ✏ 22.16 15.05 20.65 15.39 18.48

� 1.88 2.19 3.85 3.78 5.58
SCPS ✏ 24.88 13.58 21.01 6.15 10.47

� 7.42 4.93 9.57 2.83 4.75
Our ✏ 11.61 4.98 4.80 5.37 6.63

method � 0 0 0 0 0
Our method ✏ 2.67 3.11 2.27 2.72 5.76

with GT � 0 0 0 0 0

5 images A/E Octopus Red Fish 15 images Puppet
EM ✏ 9.03 8.63 EM 26.36

� 0.76 1.14 2.39
SCPS ✏ 13.23 7.60 SCPS NA

� 9.85 4.32 NA
Our ✏ 6.64 5.60 Our 12.15

method � 0 0 method 0
Our method ✏ 2.87 4.47 Our method 5.63

with GT � 0 0 with GT 0

calibrated case. In Table 1 we show the performance com-
parison of all methods in the case of datasets with 12 input
images (top) and in the case of datasets with 5 and 15 input
images (bottom). Notice that � < 10

�12 in all the recon-
structions as predicted by our analysis (see Proposition 4.1).
Since our method provides a GBR-invariant solution, we al-
ways get the same estimate no matter what pseudo-normals
and pseudo-lights we start from. This is a major advantage
over prior work.

Fig. 5 shows the comparison of the obtained normal and
depth maps for the methods [21, 2] in the case of the Bud-
dha dataset. The depth map is obtained by integrating the
normal map with a Poisson solver [22]. Figure 6 shows
all the depth maps obtained by our method across all the
datasets (bottom row) and the depth maps obtained from
the calibrated photometric stereo method (middle row). Fi-
nally, the average time 4 to run our method, implemented
in non-optimized Matlab code, on all the datasets is 13.5
seconds. Notice that the average time for [2] is 62 seconds,
while for [21] is 10 minutes. Moreover, since our standard
deviation is almost zero, we only need to run the algorithm
once, while the other methods need to be run several times.
To appreciate the fine details of the reconstructed surfaces,
in Fig 7 we show the results obtained in the case of the
Octopus dataset. We also tested our method on face recon-
struction by using data from Yale’s face database and the
reconstructed depth map and surfaces are shown in Fig. 8.

4Notice that the running time of our algorithm depends mostly on the
number of detected local maxima and much less on the size of the input
images.



Figure 5. Comparison of reconstructed normal and depth
maps. From left to right, each column corresponds to the first (x
axis), second (y axis), and third (z axis) components of the normal
map n and the depth map, respectively. Top row: Results obtained
from the calibrated photometric stereo method. Second row: Re-
sults obtained from our method. Third row: Results obtained from
the entropy minimization method. Bottom row: Results obtained
from the SCPS method.

Discussion. In the last row of each table, we also show
the performance when the selected LDR maxima are cor-
rect (based on the ground truth obtained from the calibrated
photometric stereo). Although we achieve the lowest error
rates compared to prior methods, the performance based on
the ground truth shows that the algorithm would not achieve
0 error even if the detected maxima were correct. As the
theory is exact, this limitation can only be due to non Lam-
bertian components still present in the model. Indeed, the
pre-processing step [17, 26] may not fully remove specular-
ities and shadows.

Figure 7. Octopus reconstruction. First and third images: Ren-
dered surfaces obtained with the calibrated photometric stereo
method. Second and fourth images: Rendered surfaces obtained
with our method.

Figure 8. Results on Yale’s Face database. Left: one of the input
images. Second from the left: reconstructed depth map. Third and
fourth from the left: Two views of the reconstructed surface.

7. Conclusion
In this paper we presented a simple and fast method for

solving the Generalized Bas Relief (GBR) ambiguity of
the uncalibrated photometric stereo problem. Our method
makes no stringent assumptions about the distribution of
lights, only that they are sufficiently different, and can han-
dle a wide variety of albedos and surfaces. We introduce
a novel Lambertian constraint for the distribution of lights
and normals, which can be computed in closed-form. We
use this new constraint to design a very robust algorithm
that achieves the best results to date and provides the same
estimate regardless of the GBR ambiguity. Key to our
approach is a reliable detection of Lambertian diffuse re-
flectance maxima in the input images and a robust formula-
tion of the GBR estimation process.
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