
Recovering Thin Structures via Nonlocal-Means Regularization
with Application to Depth from Defocus

Paolo Favaro
Heriot-Watt University, Edinburgh, UK

p.favaro@hw.ac.uk

Figure 1. From left to right: Detail of two 150 × 274 pixels defocused images; depth map recovered without and with nonlocal-means
regularization; 3D rendering with texture mapping of the depth map recovered with the proposed algorithm.

Abstract

We propose a novel scheme to recover depth maps con-
taining thin structures based on nonlocal-means filtering
regularization. The scheme imposes a distributed smooth-
ness constraint by relying on the assumption that pixels with
similar colors are likely to belong to the same surface, and
therefore can be used jointly to obtain a robust estimate
of their depth. This scheme can be used to solve shape-
from-X problems and we demonstrate its use in the case of
depth from defocus. We cast the problem in a variational
framework and solve it by linearizing the corresponding
Euler-Lagrange equations. The linearized system is then
inverted by using efficient numerical methods such as suc-
cessive overrelaxations or more general methods such as
conjugate gradient when the system is not diagonally dom-
inant. One of the main benefits of this formulation is that
it can handle the regularization of highly fragmented sur-
faces, which require large neighborhood structures typi-
cally difficult to solve efficiently with graph-based meth-
ods. We compare the performance of the proposed algo-
rithm with methods recently proposed in the literature that
are analogous to neighborhood filters. Finally, experimen-
tal results are shown on synthetic and real data.

1. Introduction
In this paper we focus on the task of recovering 3D sur-

faces from images with particular attention to thin struc-

tures and accurate contour estimation. The main challenge
in dealing with thin structures is that corresponding pixels
across the input images lie in an unknown elongated do-
main. On the one hand pixel-based correspondence is ex-
tremely unreliable and results in noisy estimates; on the
other hand, region-based correspondence results in wider
object contours that may completely wipe out thin struc-
tures (see Figure 1). We propose to use a novel class
of nonparametric surface smoothness priors based on the
nonlocal-means framework and show that very accurate
contours and thin structures can be recovered.

Our method is based on the principles of neighborhood
filtering, and in particular nonlocal-means filtering, which
has been successfully applied to image restoration and de-
noising [6]. In neighborhood filtering pixels that share sim-
ilar colors are averaged together to remove noise. One of
the most important properties of these filters is that they ac-
curately preserve edges and texture unlike Gaussian blur
denoising. This suggests that one could use a neighbor-
hood filter strategy for recovering thin structures and define
a regularization term to penalize depth discontinuities by
averaging corresponding pixels. Such strategy however, es-
tablishes correspondences by using pixel by pixel compar-
isons, which might not be always reliable especially in the
presence of noise. In our approach instead we propose to
determine correspondences by using region-based compar-
isons, as done in nonlocal-means filtering. Using extended
regions however, might lead to finding few good correspon-
dences in the case of thin structures. Therefore, to collect
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as many valid correspondences as possible we do not use
the common square or circular regions, but rather regions
with elongated shapes (ellipsoids) and test them for a finite
set of directions. The resulting algorithm finds large sets of
reliable correspondences between pixels.

While large sets of correspondences provide a useful
smoothness constraint, they also render the 3D surface es-
timation task quite challenging. One approach is to sim-
plify the correspondences and to keep only the most rele-
vant ones in a discrete graph [20]. This however, results in
smoothness terms that are too weak at thin structures (see
section 2.2). Hence, we propose a solution that keeps all
the correspondences at all times. We formulate the 3D sur-
face estimation task as the minimization of a cost functional
in the continuous domain. Necessary conditions for a min-
imum can be written in the form of Euler-Lagrange equa-
tions which we solve with an iterative linearization [4]. The
resulting linear system is then inverted efficiently by em-
ploying successive overrelaxations [28].

We illustrate this novel regularization scheme in the case
of depth from defocus, where one exploits changes in the
lens settings of finite aperture cameras [18, 11, 9, 13, 25],
although other shape-from-X problems could be used as
well. Notice that although we impose a smoothness con-
straint where depths of pixels with similar colors are av-
eraged, additional regularization is needed at pixels without
correspondence to make the depth estimation problem well-
posed. We employ total variation [7, 4, 28] which tends to
favor piecewise constant functions, and, therefore, yields
smooth surfaces while allowing for sharp discontinuities.

Contributions

1. We introduce a novel depth smoothness constraint
based on nonlocal-means filtering, i.e., pixels whose
intensities match within windows should share simi-
lar depth values; unlike previous approaches, the pro-
posed nonlocal-means works on thin structures by us-
ing directional elongated windows;

2. In contrast to [20], one of the top-performing algo-
rithms in stereopsis that retains only a sparse set of
dominant matches established by pixel-to-pixel com-
parisons, we propose a numerically efficient method
based on iterated linearization that uses all correspon-
dences;

3. We demonstrate the proposed strategy in depth from
defocus and obtain performances that compare favor-
ably with the state-of-the-art.

2. Regularized Shape Estimation
The family of problems that we consider take the form

of an energy minimization with three terms: a data fidelity

term, a depth smoothness regularization term, and a neigh-
borhood regularization term:

ŝ = arg min
s
E[s] .= arg min

s
Edata[s] +αEtv[s] +βEn[s].

(1)
where s denotes the unknown depth (or disparity) map and
α and β are two positive constants. In this paper we con-
sider the data fidelity term Edata[s] given in the case of
depth from defocus (see section 3) and pay more attention to
the regularization terms. In particular, we consider isotropic
total variation (or its regularized version) so that solutions
are constrained to be piecewise constant [8]

Etv[s] =
∫
‖∇s(y)‖ dy. (2)

Implementation details of Etv will be explained in sec-
tion 4. This term alone tends to yield sharp boundaries
whose support is broader than the true one. Furthermore,
it tends to remove thin surfaces (see Figure 1). To contrast
this behavior we design a neighborhood regularization term
En. As mentioned in the previous sections, the main idea
is to link the depth values of pixels sharing similar color (or
texture). In the next sections we show how to do so by using
neighborhood filtering.

2.1. Pixel Similarity and Neighborhood Filtering

The idea of correlating pixels with similar color or tex-
ture has been shown to be particularly effective in preserv-
ing accurate edges in stereopsis [3, 14, 23, 17, 20] as well
as image denoising [6, 27, 24]. In the case of thin structures
this strategy is essential. The computation of the energy
terms in eq. (1) requires combining values at multiple pix-
els. If these pixels do not belong to the same surface then
values obtained from their combination might be highly in-
correct. For this reason the piecewise smoothness energy
term Etv tends to misplace the edge location and to blend
background with foreground at thin surfaces (see Figure 1).
In this section we briefly review and analyze how neigh-
borhood filtering methods establish pixel correspondence so
that we can devise a sensible strategy for thin structures. A
detailed account on neighborhood methods can be found in
[6].

The neighborhood and nonlocal-means filters are ex-
tremely effective in removing noise from images while pre-
serving edges and texture structure. These filters satisfy the
noise to noise principle, i.e., when given white noise as in-
put they return the white noise, are statistically optimal (for
a given noise model), and can yield (with proper tuning) un-
structured method noise. We begin with the simplest filter-
ing method that one can consider: Gaussian blur. Its filter-
ing strategy applies to most image filtering operations (e.g.,
gradients), where pixel similarity is entirely based on how
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close two pixels are in the spatial domain. Given a noisy
image I , the Gaussian blur filter returns

Î(y) =
1
πτ2

∫
Ω⊂R2

e−
|y−x|2
τ I(x)dx (3)

where τ is a bandwidth parameter determining the size of
the spatial filter. This filter averages together pixels that
might not be related to each other, thus resulting in blurred
edges. A better method is a technique called sigma-filter
[27, 15], where averaging is done only between pixels with
the same color

Î(y) =
1

C(y)

∫
B(x)

e−
|I(y)−I(x)|2

τ I(x)dx (4)

andC(y) is the normalization factor. Similarly, the bilateral
filter [24] and SUSAN [21] combine the above two filters to
obtain a localized sigma-filter

Î(y) =
1

C(y)

∫
Ω

e−
|y−x|2
τ1 e−

|I(y)−I(x)|2
τ2 I(x)dx (5)

where again C(y) is the normalization factor and τ1 and
τ2 are the bandwidth parameters in the spatial and color
domains respectively. These filters however, create irreg-
ularities at edges and leave some residual noise in uniform
regions [6]. Such artifacts are due to the pixel-based match-
ing that might be susceptible to noise. To be less sensi-
tive to noise one could use region-based matching as in the
nonlocal-means filter

Î(y) =
1

C(y)

∫
Ω

e−
Gρ∗|I(y)−I(x)|2(0)

τ I(x)dx (6)

where G is an isotropic Gaussian kernel with variance ρ
such that

Gρ∗|I(y)−I(x)|2(0) =
∫

R2
Gρ(t)|I(y+t)−I(x+t)|2dt.

(7)

2.2. Directional Nonlocal-Means Regularization

The nonlocal-means filter allows one to establish reli-
able correspondences between pixels. However, in the case
of thin structures matching square or circular regions may
lead to few useful correspondences. The first step towards
dealing with thin structures is to extend the nonlocal-means
filter by changing square regions with elongated regions, for
instance by using a non isotropic Gaussian with variance ρ
in the direction v .= [cos(θ) sin(θ)]T defined by the angle
θ, and variance approximately 0 along the orthogonal axis

Gρ,θ∗|I(y)−I(x)|2(0) .=
∫

R
Gρ(t)|I(y+tv)−I(x+tv)|2dt.

(8)

Then, we can look for the best such region at each pixel and
use it for the pixel matching, i.e.,

Î(y) =
1

C∗(y)

∫
Ω

e−minθ
Gρ,θ∗|I(y)−I(x)|2(0)

τ I(x)dx (9)

where C∗(y) is the normalization factor corresponding to
the selected θ at each y. For notational simplicity, let us
define the filtering weights

W(x,y) .= e−minθ
Gρ,θ∗|I(y)−I(x)|2

τ . (10)

Now, we can use the pixel correspondence strategy not only
to denoise images, but also to regularize depth maps. We
define the neighborhood regularization term so that pixels
with similar colors are encouraged to have similar depth
values, i.e.,

En[s] =
∫
W(x,y) (s(y)− s(x))2

dxdy. (11)

If we evaluate the Euler-Lagrange equation with respect to
the depth s, we obtain∫

W(x,y)(s(y)− s(x))dx = 0 ∀y ∈ Ω. (12)

By rearranging eq. (12) one immediately obtains that the
minimum of En[s] is the directional nonlocal-means filter-
ing of s

s(y) =
1

C∗(y)

∫
W(x,y)s(x)dx. (13)

Remark 1 Notice the similarity between eq. (12) and the
upper bound to the nonparametric smoothness term de-
rived through a Bayesian formulation in [20]. Indeed, the
upper bound in [20] could be approximately derived by
using the bilateral filter given in eq. (5) where also the
spatial distance between pixels is taken into account and
where correspondence is established via pixel-based match-
ing. In contrast, in eq. (12) we use directional region match-
ing, which yields more reliable correspondences, and avoid
terms based on the spatial coordinates of pixels, which is
equivalent to using a uniform probability density distribu-
tion in the Bayesian formulation. Finally, notice that our
energy term is quadratic in the unknown depth map s and
therefore it can be easily minimized.

3. Shape Estimation: Depth from Defocus
The last term left to be defined in the energy minimiza-

tion (1) is the data fidelity term. We consider the data term
provided by a formulation of the problem of depth from de-
focus where there is no need for image restoration. Firstly,
however, we need to introduce the notation and the image
formation model.
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Defocused images I : Z2 7→ [0,∞] have been success-
fully described with linear models of the type

I(y) =
∫

Ω⊂R2
kσ(y,x)f(x)dx (14)

where kσ denotes the point spread function (PSF) of the
camera and f : Ω 7→ [0,∞] is the sharp image of the scene.
The PSF kσ depends on the 3D surface s : Z2 7→ [0,∞]
of the scene. The 2D coordinates y = [y1 y2]T lie on
the sensor array, while the 2D coordinates x = [x1 x2]T

parametrize points in 3D space. More specifically, the PSF
is often approximated by a Gaussian kernel [9, 11]

kσ(y,x) .=
1

2πσ2
e−
‖y−x‖2

2σ2

σ
.= γ

Dv

2

∣∣∣∣ 1
F
− 1
v
− 1
s(y)

∣∣∣∣ ,
(15)

where σ is the spread of the PSF and γ is a calibration pa-
rameter (the unit conversion of millimeters to pixels), D is
the lens aperture, F is the focal length of the lens, and v is
the spacing between the sensor and the camera lens. Other
common choices are the Pillbox function

kσ(y,x) .=
{

1
πσ2 ‖x− y‖ < σ

0 otherwise (16)

where σ is defined as above. Both of these models ig-
nore diffraction and other aberration effects and therefore
hold only approximately. Nonetheless, such effects are rel-
atively negligible in our data as the dimensions at play in
our camera (e.g., the pixel size) are sufficiently large. Our
proposed method does not exploit one or the other choice.
However, we find that the Pillbox function leads to a more
computationally and memory efficient algorithm as it uses
smaller supports for a given depth value. Notice that in gen-
eral a calibration procedure to register the defocused images
needs to be used, even if one employs telecentric optics [26]
to eliminate scaling effects.

In shape from defocus, one is typically given two defo-
cused images I1 and I2 obtained with different focus set-
tings v1 and v2 respectively. This results in changes to the
PSF k as shown in eqs. (15) and (16). The inference of s
can be posed as the problem of matching the observations
I1 and I2 to the defocused image model eq. (14). However,
this requires the estimation of an additional unknown, the
sharp image f . One way to avoid estimating f is to formu-
late the inference problem so that f is algebraically elimi-
nated. This has been done in the literature with the so-called
equifocal planar approximation, where the model (14) is lo-
cally approximated as a convolution and Fourier analysis
allows to obtain a closed form solution. An alternative to
such approximation is to match the observations to each

other as it is done in stereopsis. Matching defocused im-
ages to each other has been done in the past in shape from
defocus [10, 12, 11, 22]. The idea is to further blur with a
kernel one image until it matches the other. We therefore
consider the following approximate models

I1(y) =
∫
kσ1(y,x)f(x)dx '

∫
k∆σ(y, ȳ)I2(ȳ)dȳ

=
∫
k∆σ(y, ȳ)

∫
kσ2(ȳ,x)f(x)dxdȳ

(17)

I2(y) =
∫
kσ2(y,x)f(x)dx '

∫
k∆σ(y, ȳ)I1(ȳ)dȳ

=
∫
k∆σ(y, ȳ)

∫
kσ1(ȳ,x)f(x)dxdȳ

(18)

where eq. (17) holds for Ξ .= {y : σ2
1 > σ2

2} and eq. (18)
holds in the complementary domain Ξc

.= {y : σ2
2 > σ2

1}.
The relative spread ∆σ is defined as ∆σ .=

√
σ2

1 − σ2
2 for

all y ∈ Ξ and as ∆σ .= −
√
σ2

2 − σ2
1 for all y ∈ Ξc. To

simplify the notation, we define

Î2,∆σ(y) .=
∫
k∆σ(y, ȳ)I2(ȳ)dȳ

Î1,∆σ(y) .=
∫
k∆σ(y, ȳ)I1(ȳ)dȳ.

(19)

This allows us to write the following data term for the en-
ergy

Edata[s] =
∫

Ξ

Ψ
(
Î2,∆σ(y)− I1(y)

)
dy

+
∫

Ξc

Ψ
(
Î1,∆σ(y)− I2(y)

)
dy

=
∫
H(∆σ(y))Ψ

(
Î2,∆σ(y)− I1(y)

)
dy

+
∫

(1−H(∆σ(y)))Ψ
(
Î1,∆σ(y)− I2(y)

)
dy

(20)
where H denotes the Heaviside function, and Ψ is a robust
norm. In our implementation we choose Ψ(z) .=

√
z2 + ε2

with ε
.= 10−3 and image intensities are in the range

[0, 255]. The estimation of the surface s can then be ob-
tained from the spread ∆σ via

s(y) =
(

1
F −

1
v2−v1

− 1
|v2−v1|

√
1 + 4∆σ|∆σ|

γ2D2
v2−v1
v2+v1

)−1

.

(21)

4. Iterated Linearization Scheme

The minimization (1) can be carried out in several ways.
Because of numerical efficiency and the complexity of
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Table 1. Numerical approximations for the total variation regularization scheme [5].

∇ ·
„
∇sn,m
‖∇sn,m‖

«
≈ |∇s

n+ 1
2 ,m
|(sn+1,m − sn,m)

− |∇s
n− 1

2 ,m
|(sn,m − sn−1,m)

+ |∇s
n,m+ 1

2
|(sn,m+1 − sn,m)

− |∇s
n,m− 1

2
|(sn,m − sn,m−1)

|∇s
n+ 1

2 ,m
| ≈

q
(sn+1,m − sn,m)2 + 1

16 (sn+1,m+1 − sn+1,m−1 + sn,m+1 − sn,m−1)2

|∇s
n− 1

2 ,m
| ≈

q
(sn,m − sn−1,m)2 + 1

16 (sn−1,m+1 − sn−1,m−1 + sn,m+1 − sn,m−1)2

|∇s
n,m+ 1

2
| ≈

q
(sn,m+1 − sn,m)2 + 1

16 (sn+1,m+1 − sn−1,m+1 + sn+1,m − sn−1,m)2

|∇s
n,m− 1

2
| ≈

q
(sn,m − sn,m−1)2 + 1

16 (sn+1,m−1 − sn−1,m−1 + sn+1,m − sn−1,m)2.

the neighborhood system, we choose to solve the Euler-
Lagrange equations of the cost functional

∇E[s] .= ∇Edata[s] + α∇Etv[s] + β∇En[s] = 0 (22)

by iterative linearization [5]. The key idea is to describe the
update to the depth map s as a small perturbation δ such
that one can use the first-order approximation of the above
equations

∇E[s+ δ] ≈ ∇E[s] + 〈∂∇E[s]
∂s , δ〉 = 0. (23)

Then, once δ has been computed by inverting the linearised
system, the depth map s is updated with s + δ and the step
repeated until δ ≈ 0. To retain efficiency, the matrix ∂∇E[s]

∂s
should satisfy the necessary conditions for convergence
with the successive over-relaxation method [28]. Such con-
ditions require that the relaxation parameter 0 < ω < 2
and that ∂∇E[s]

∂s be symmetric and positive-definite, which
is typically not true. If we choose the relaxation parameter
ω = 1 successive over-relaxations reduces to Gauss-Seidel
and convergence is guaranteed also when ∂∇E[s]

∂s is strictly
diagonally dominant matrix, i.e., such that

∀i : |eii| >
∑
j 6=i

|eij | eij
.=
[
∂∇E[s]
∂s

]
ij

. (24)

When neither of these conditions are satisfied, one needs
to resort to slower methods to solve linear systems, such
as conjugate gradient on the least square formulation. One
simple technique to help the convergence of the linearized
system is to introduce an artificial term µδ with µ > 0 in
eq. (22) that penalizes large values of δ. In the first order ap-
proximation (23) this results in an identity matrix scaled by
µ. Then, one can choose µ so that the resulting linear sys-
tem is diagonally dominant. Otherwise, one could use other
fast solvers such as Gaussian Belief Propagation provided
that ∂∇E[s]

∂s is walk-summable [19, 16]. More details on the
computation of the gradients are reported in the Appendix.

4.1. A Note on Pyramid Schemes

We also have implemented a coarse-to-fine (pyramid)
scheme where the above equations are solved first on a
down-sampled version of the input images and then the so-
lution is up-sampled and used to initialize the next iteration.
However, we find that this procedure has several problems:

1) it introduces a bias in the depth estimate towards large
edges, and 2) the data term does not have useful matches
for scales that are too low. The first issue might be due
to the coarse resolution of the initial depth map inherited
from the previous scale in the pyramid scheme. It seems
that once a sharp edge is created, it is difficult for the algo-
rithm to adjust its position at the higher scales. In the second
issue the low high-frequency content in the down-sampled
images seems to generate a plateau in the data fidelity term,
i.e., there is a larger number of ambiguities in the solution.
This is particularly evident in depth from defocus where the
difference in frequency content of texture is used to esti-
mate the depth map. For these reasons we currently use
only 2 levels of the pyramid.

5. Experiments
Synthetic Data: In this section we demonstrate how the
proposed method performs with different levels of noise in
the input data and compare it to the bilateral filtering given
in eq. (5) (which is comparable to using the nonparametric
smoothness term in [20] at its best, i.e., where all correspon-
dences are used). As one can see in Figure 2, the proposed
method returns more reliable correspondences which then
allow an accurate estimation of the edges. We synthetically
generate defocused image pairs of a fronto-parallel plane
occluded by a regular grid in the foreground. Then, we add
4 levels of Gaussian noise, namely, 0%, 1%, 2%, 5% of
the maximum intensity. We also test the method for differ-
ent number of neighbors used in the correspondences. This
is shown in Figure 3 The test consists in keeping only the
dominant components in the weight matrix for each neigh-
borhood system. The weight matrix is then re-normalized
with the remaining ones. We consider 5 cases: 2, 3, 4, 6,
and 10 dominant components. It is evident that the number
of correspondences is key to achieving high accuracy in the
shape and position of the depth map. Finally, we assess the
accuracy in the reconstruction of the depth map. For sim-
plicity, we generate data with the Pillbox PSF and then use
the same model in the matching term and focus on the es-
timation of the relative depth ∆σ as the depth map can be
obtained via eq. (21). In general the PSF is not known un-
less one performs a calibration procedure. Furthermore, the
matching term used in the proposed method is an approx-
imation unless the PSF is a Gaussian and the depth maps
are fronto-parallel planes. This results in distortions of the
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Figure 2. Comparison for different levels of noise in the input data.
From left to right, each column shows experiments for additive
noise in the input data with levels 0%, 1%, 2%, 5% of the max-
imum intensity. First row: one of the two input images. Second
row: depth maps recovered with Bilateral filtering regularization.
Third row: depth maps recovered with the proposed regulariza-
tion. In all experiments only the 6 most significant weights were
kept. The additive noise makes the depth estimation more difficult
unless pixels move jointly.

Figure 3. Comparison for different numbers of correspondences.
Each column shows the depth map recovered with the proposed
method for different sets of correspondences. From left to right,
we keep only 2, 3, 4, 6, 10 dominant components in the weight
matrix.

depth map especially around the locations where the relative
blur between the input data is approximately 0. We simulate
planes at 51 depth locations and plot the mean and 3 times
the standard deviation of the relative estimated depth ∆σ by
using the proposed algorithm in Figure 4.

Real Data: We have tested our algorithms on real data
that is publicly available [1, 2], where also specifications
and settings of the hardware can be found, and on a data
set that we have captured with a CANON EOS 5D SLR.
In Figure 5 the first two rows show 3 publicly available
data sets and a data set that we have captured (last col-
umn). Each set is made of two defocused images: In one
image objects closer to the camera are in focus, and in the
other image objects further away form the camera are in
focus. The third and fourth rows show the resulting depth
map and metallic-rendered surfaces obtained with the pro-
posed method. Depth maps are encoded with brightness
intensity values where dark intensities correspond to points
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Figure 4. Estimated relative depth map (ordinate) versus ground
truth (abscissa). We plot the mean and 3 times the standard de-
viation of the relative depth estimated at 51 planes with no noise
(solid blue) and with 2% noise (dotted red).

far away from the camera and bright intensities correspond
to points close to the camera. The metallic-rendered sur-
faces are used to illustrate the fine-details of the estimated
surfaces.

In the data set that we have captured, we consider a
scene with more elaborate objects containing thin struc-
tures. Also, to simulate a realistic scenario where a user
captures two defocused images, the two images are cap-
tured by changing the focus setting of the lens while hold-
ing the camera in hand in two different time instants. This
resulted in a small change in the viewpoint that needed ad-
justment. We registered the two frames by using an affine
transformation and used a pyramid scheme to accelerate the
convergence. Notice that, due to the non-planar 3D surface
of the scene, the alignment is reasonable but not perfect.
However, the method is quite robust to such small misalign-
ments and still retrieves accurate edges and thin structures
(see magnification of a detail in Figure 1). In the simulation
we have used a MacBook 2.4GHz Core 2 Duo, with a (rea-
sonably) optimized Matlab implementation of the iterated
linearization methods. The running time for each simula-
tion strongly depends on the amount of defocus in the input
data. As a rule of thumb, more defocus requires more com-
putational time. On average the simulations with the pro-
posed method required about 10 minutes on 640× 480 pix-
els images. Notice that the nonlocal-means neighborhood
term increases the number of computations substantially not
only during the evaluation of the weights for each corre-
spondence, but also by decreasing the convergence rate of
the successive over-relaxations algorithm (due to the larger
neighborhood structures).
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Figure 5. Comparison of the proposed methods on publicly available real data and a data set that we have captured (rightmost column).
The first two rows show the two input images obtained with different focus settings (and scaled). The third and the fourth rows show two
renderings of the resulting depth maps obtained the proposed iterative linearization method. Notice that our algorithm compares favorably
with state-of-the-art methods (see [2] and [1]). Correspondence is much more accurate in color images than just grayscale values. Also,
notice that in some data sets the texture of the objects can be easily confused with the texture in the background.

6. Limitations and Discussion

Determining which pixels share the same surface is by
and large still an unsolved problem. Indeed by matching
pixels with similar color we might also connect surfaces
that are completely uncorrelated. Vice versa, the same sur-
face might have regions with very different colors. In both
cases the proposed procedure might introduce artifacts: av-
eraging uncorrelated surfaces or creating incorrect edges.
Nonetheless, the proposed regularization seems to be quite
helpful in most scenarios in depth from defocus. The idea of
establishing reliable correspondences by comparing elon-
gated windows and then penalizing corresponding pixels
with different depth is demonstrated in the precise estima-
tion of boundaries of thin surfaces.

Appendix
Now, the computation of ∇E[s] amounts to the evalua-

tion of three terms: ∇Edata[s], ∇Etv[s], and ∇En[s]. We
derive them directly from the Euler-Lagrange equations:

∇Edata[s]
.
=∂∆σ

∂s
(y)

"
H(∆σ(y))Ψ′

“
Î2,∆σ(y)− I1(y)

”
∂Î2,∆σ(y)

∂∆σ

+(1−H(∆σ(y)))Ψ′
“
Î1,∆σ(y)− I2(y)

”
∂Î1,∆σ(y)

∂∆σ

#
,

(25)

∇Etv [s]
.
= −∇ ·

„
∇s(y)

|∇s(y)|

«
, (26)

and
∇En[s]

.
=

Z
W(x,y)(s(y)− s(x))dx. (27)

Notice that the Dirac delta terms in eq. (25) cancel each
other and that the chosen robust norm yields Ψ′(z) =
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z√
z2+ε2

. The second term ∂∇E[s]
∂s is a matrix and can be

evaluated by defining

〈 ∂∇E[s]
∂s

, δ〉 .= 〈 ∂∇Edata[s]
∂s

, δ〉+ α〈 ∂∇Etv [s]
∂s

, δ〉+ β〈 ∂∇En[s]
∂s

, δ〉
(28)

where

〈 ∂∇Edata[s]
∂s

, δ〉≈
“
∂∆σ
∂s

”2h
H(∆σ)Ψ′

“
Î2,∆σ − I1

”„
∂Î2,∆σ
∂∆σ

«2

+(1−H(∆σ))Ψ′
“
Î1,∆σ − I2

”„
∂Î1,∆σ
∂∆σ

«2 i
δ,

(29)

〈 ∂∇Etv [s]
∂s

, δ〉 ≈ −∇ ·
“
∇δ
|∇s|

”
, (30)

and
〈 ∂∇En[s]

∂s
, δ〉 = diag

ˆR
W(x,y)dx

˜
−W(y,x). (31)

Notice that in eq. (29) and eq. (30) we have ignored second
order derivatives that appear as a result of the derivatives
with respect to s and the (highly nonlinear) terms in the
Dirac delta.
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