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Abstract. In this paper, we propose a method to restore a single image affected
by space-varying blur. The main novelty of our method is the use of recurring
patterns as regularization during the restoration process. We postulate that re-
stored patterns in the deblurred image should resemble other sharp details in the
input image. To this purpose, we establish the correspondence of regions that are
similar up to Gaussian blur. When two regions are in correspondence, one can
perform deblurring by using the sharpest of the two as a proposal. Our solution
consists of two steps: First, estimate correspondence of similar patches and their
relative amount of blurring; second, restore the input image by imposing the sim-
ilarity of such recurring patterns as a prior. Our approach has been successfully
tested on both real and synthetic data.

1 Introduction

In many instances, images contain recurring patterns that are similar up to some trans-
formation group. For example, the image of a tree may contain multiple instances of the
same leaf at different locations, scales and orientations. In more specific applications,
such as corneal imaging, one may find repeated patterns of cells or clusters of cells (see
Figure 1). Due to the large aperture of the microscope, cells are not only similar up to
an affine transformation, but also up to defocus. In other words, there may be cells in
some locations that are blurred version of other cells. Then, one could think of restor-
ing those cells by using the corresponding ones that are less blurred. More in general,
if we are interested in restoring images belonging to a specific domain, such as corneal
imaging, then one can exploit more than the lone input image. One could also use a
database of corneal images to find more recurring patterns. This kind of approach is
very similar in spirit to “hallucination” methods [1] which have been applied to faces
with success. Our approach can be seen as an extension to these methods, which are
limited to a single recurring pattern (e.g. a face) and whose position is known. In this
paper, however, to keep the method focused, we consider the restoration problem in the
simple case when the database is made of a single image. The extension to multiple
images is straightforward.

Exemplar-based methods for inpainting [2] are also similar to our approach. As in
[2], we look for exemplars that can be used to restore the input image. However, while
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Fig. 1. Oftentimes, images exhibit recurring patterns. For example, in natural images such pat-
terns may be the leaves of a plant or the petals of a flower (left image). In more specific domains,
such as in corneal imaging, the recurring pattern is made of cells of the cornea (right image).
Notice how both the examples contain regions that are not only similar up to translation, rotation
and scale, but also up to the amount of defocus.

we share the general idea of these popular methods, we do not use the same procedural
methods to recover the missing information. Rather, we perform restoration by simulta-
neously considering all the corresponding patterns and their relative amount of defocus.
This simultaneous integration allows us to automatically take into account the overlap
of patterns and find the best tradeoff between them and the original input image.

In this paper, we propose a solution to the problem of deblurring a single image af-
fected by defocus blur. Our main contribution is the formulation of a novel regulariza-
tion method, which is based on the input data. As such, we relate to image restoration in
the field of image processing [3] and blind deconvolution in the field of signal process-
ing [4], which belong to the larger class of inverse problems [5]. Most of these problems
are formulated as a linear model (either in discrete or continuous form), where the task
is to infer the unknown object by inverting the model. The main challenge is that such
inversion is ill-posed, as it may lead to multiple solution, or have no solution, or be
such that small variations in the input data may cause large variations in the recovered
unknown. The general recipe to solve ill-posed problems is to introduce regularization
[6]. Regularization has been applied to the inverting operator [6, 7] and/or directly to
the restored image. The latter approach is also known as Tikhonov regularization [6].
Our approach falls within this type of regularization methods, as we directly operate on
the unknown unblurred image. Furthermore, our main strength is that we regularize the
restoration of the image by using only the image itself, thus introducing texture that is
familiar to the scene.

When the input image is made only of recurring patterns, our algorithm can be used
to infer a depth map of the scene. This is reminiscent of shape from texture methods
[8, 9], where one recovers the local orientation of an image patch. In our case, rather
than using orientation, we consider the local amount of blur as a cue for shape as it
has been done in shape from defocus [10, 11, 12, 13, 14]. Indeed, a byproduct of our
algorithm is the estimation of the relative amount of blur between two similar regions,
which can be directly related to depth.
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In the next section, we will introduce our model of blurred images with recurring
patterns. Then, we will formalize the problem of image restoration, so that it has a non-
trivial and unambiguous solution (section 3). We show that despite the complexity of
the model and the unknowns, the restoration problem can be solved into two steps: First,
we determine the correspondences between recurring patterns and their relative amount
of blur (section 4), and second, we integrate this information to restore the input image
into a global optimization scheme (section 5).

2 Modeling Defocus and Recurring Patterns

In this section, we will introduce the image formation model for scenes with recurring
patterns and captured by a real aperture camera. Let us start by defining the image
formation model of a blurred image I : Ω ⊂ R

2 �→ [0, ∞)

I(y) =
∫

Kσ(y,x)f(x)dx + n(y) ∀y ∈ Ω (1)

where Kσ : Ω × R × [0, ∞) is called the point spread function (PSF) [15], f : R �→
[0, ∞) is the unblurred texture of the scene and n : Ω �→ R collects noise and distortions
that are not captured by the linear term in eq. (1). The PSF Kσ depends on the amount
of defocus encoded by the variable σ : Ω �→ [0, ∞), which is related to the depth of the
scene s : Ω �→ [0, ∞) via [14]

σ(x) =
Dv

2

∣∣∣∣1v +
1

s(x)
− 1

F

∣∣∣∣ (2)

where D is the diameter of the lens, v the distance between the lens and the image plane
and F is the focal length of the lens.

We now formalize the notion of recurrence of a pattern within a blurred image and
propose a suitable representation for it. Suppose that two regions of the unblurred image
f , O ⊂ Ω and O′ ⊂ Ω with O

⋂
O′ = ∅, are identical to each other. Define T : Ω �→ Ω

the mapping of points x ∈ O to points x′ ∈ O′, so that T (x) = x′. Then, we model a
recurrence as

f(x) = f(T (x)) ∀x ∈ O. (3)

More in general, let us define the mapping T for all recurrences and let us call T the
correspondence map. In other words, T (x) tells us where to find the location of a region
similar to the one around x. When patterns are unique, then we simply have T (x) = x
∀x ∈ O, i.e. a self-reference. Notice that a generic correspondence map may generate
loops. For example, there may be points x 	= y such that T (x) = y and T (y) = x.
In our context such loops are unnecessary and undesirable. Hence, we will enforce that
the correspondence map has only two types of mappings:

1. a self-reference, i.e. T (x) = x
2. a link to a self-reference, i.e. T (T (x)) = T (x).

For clarity, see Figure 2.
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(a) (b)

Fig. 2. The two types of links admitted by the correspondence map T . On the left we have a
self-reference, while on the right we show a link to a self-reference.

The correspondence map T just defined is very general and captures any type of de-
formation of one region to another. For instance, local affine deformations are captured
by using

T (x) = Ax + b ∀x ∈ O (4)

where A is a 2 × 2 matrix and b a 2-dimensional vector. Later on, we will restrict the
class of parametric deformations modeled by T to simple translations, i.e. such that A
is the identity matrix in eq. (4), and we will show how to recover the translation b from
a blurred image.

So far, the model that we have introduced can be summarized as:

f(x) = f(T (x))

I(y) =
∫

Kσ(y,x)f(x)dx (5)

where we have neglected the term n for simplicity. We assume that the blurring is
locally constant, and therefore it can be modeled by a shift-invariant PSF Kσ, and that
the PSF is Gaussian, i.e. such that

Kσ(y,x) =
1√

2πσ2(y)
exp− ‖y−x‖2

2σ2(y) . (6)

We will now show in the next section how to pose the problem of deblurring with
recurring regions.

3 Maximizing Deblurring

Suppose that O ⊂ Ω is a recurring region. Then, according to eq. (5) we have that

I(y) =
∫

Kσ(y,x)f(x)dx =
∫

Kσ(y,x)f(T (x))dx. (7)

If now we allow the correspondence map to capture only translations, then we have
T (x) = x + b. By substituting the explicit expression of T in the equation above, and
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using the assumption that blurring is locally constant and Gaussian, it is easy to derive
that

I(y) =
∫

Kσ(y + b,x)f(x)dx =
∫

KΔσ(y,x)I(x + b)dx (8)

where Δσ is called relative blur and it satisfies Δσ2(y) = σ2(y) − σ2(y + b),
∀y ∈ O. Since relative blur is meaningful if and only if Δσ(y) ≥ 0, we impose
that the correspondence map T maps regions to regions that are less blurred, i.e. such
that σ2(x) ≥ σ2(T (x)). Hence, by definition, regions that are self-referencing will be
subject to no blurring (Δσ = 0).

The main advantage of eq. (8) is that it does not depend on the unblurred image f ,
as eq. (5), but only on the the relative blur Δσ and the correspondence map T . Hence,
by using eq. (8) one can decouple the problem of simultaneously estimating all the un-
knowns into two problems where one first recovers the relative blur and the correspon-
dence map and then restores the unblurred image f . In this section, we will introduce
the problem of recovering the first two unknowns, while we will devote section 5 to the
restoration of the unblurred image f .

Now, recall eq. (8). It is easy to see that this equation is satisfied by Δσ = 0 and
T (x) = x. This means that given a blurred image I , a correspondence map T that is
always admissible is the one such that all regions are unique and hence their mapping
is a self-reference. As a consequence, the relative blur will be null everywhere. Such
T and Δσ do not give any advantage with respect to previous methods for deblurring.
To avoid this situation, we pose the problem of finding the solution with largest relative
blur. Hence, to recover Δσ and T we pose the following maximization problem

Δσ, T = arg max
Δσ

∫
Δσ2(x)dx

subject to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I(y) =
∫

KΔσ(y,x)I(x + b)dx

T (x) = x ∀x|Δσ(x) = 0
T (x) = x + b,b 	= 0 ∀x|Δσ(x) > 0
T (T (x)) = T (x)

(9)

where the first constraint corresponds to eq. (8); the second one corresponds to hav-
ing no relative blur between self-references; the third one corresponds to imposing the
translational model whenever there is relative blur between two regions; finally, the
fourth constraint imposes that T satisfies only the two types of mappings shown in
Figure 2. This equation can also be interpreted as the maximization of the amount of
deblurring that we will be able to perform in the second part of the algorithm (section 5).

4 Localization of Recurring Regions

In order to solve the problem in eq. (9), we need to recall the representation of the
correspondence map T . The map T is defined jointly with the relative blur Δσ as being
either

T (x) = x ∀x|Δσ(x) = 0 (10)
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or
T (x) = x + b,b 	= 0 ∀x|Δσ(x) > 0. (11)

In other words, the relative blur defines a partition of Ω into regions where T is equal
to a constant vector b (Figure 3). Given this representation, we propose the following
approximate algorithm to solve eq. (9):

– Initialize the map T such that T (x) = x ∀x ∈ Ω
– Quantize the relative depth into L levels
– for each level l from L to 0

• for each translation b
∗ Compute the region where all the constraints in eq. (9) are simultaneously

satisfied; in particular, where eq. (8) is satisfied and where Δσ(x+b) = 0
• Merge the new correspondences to the current map T so that the resulting map

is admissible, i.e. such that T (T (x)) = x ∀x ∈ Ω. Indeed, although the
new correspondences and the current map T are admissible on their own, when
merging them there may be links with two hops. Since we start from the highest
depth level and proceed to the lowest, such multiple hops are not possible and
we set them to be self-references.

Once both Δσ and T have been computed, we can proceed with the restoration of the
unblurred image f . In the next section, we call such restoration defocus inpainting as
we are filling in blurred regions with the corresponding sharp ones.

Fig. 3. A partition of the image domain Ω into regions where the relative blur is 0 (b0) and where
it is strictly positive (b1, b2, b3, b4). Notice that multiple partitions may be in correspondence
with the same region.

5 Defocus Inpainting

Image restoration is well-known to be an ill-posed problem [5]. To eliminate the ill-
posedness, one can introduce regularization during the restoration process. Since we
pose image restoration as an energy minimization problem, regularization can be added
in the form of an additional energy term E2, so that our solution can be found by mini-
mizing

f̂ = arg min
f

∫
Ω

(
I(y) −

∫
Kσ(y,x)f(x)dx

)2

dy + μE2 (12)
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where μ is a scalar that regulates the amount of regularization. Typically, the term E2
is a prior that is introduced independently of the input image. For example, one could
use a measure of sharpness of local patches such as the structure tensor [16].

In our approach instead, we exploit the recurrence of regions as a regularization term.
We define E2 to be

E2 =
∫

Ω

(
I(y) −

∫
KΔσ(y, z)

∫
Kσ(z + b,x)f(x)dx

)2

dy. (13)

Notice that in eq. (12) one has to recover both the depth map s (encoded by the amount
of blur σ) and the unblurred image f . Furthermore, such reconstruction is possible only
if one knows the camera parameters. In many instances, however, such parameters are
not available. In this case, we propose a method to improve the restoration of the input
image I , by introducing the following constraints:

f(x) = I(x) ∀x|T (x) = x
f(x) = f(T (x)) ∀x|T (x) 	= x.

(14)

The two equations above formalize the following procedure: if a region is self-
referencing, then no restoration is performed; if a region maps to another region, since
such region is sharper by construction of the correspondence map T (see section 3),
then the latter one is used in place of the first one. Hence, the regularization term in this
case becomes simply:

E2 =
∫

Ω

(f(x) − I(T (x)))2 dx (15)

and the data term in eq. (12) has to be computed on the known relative blur Δσ rather
than σ resulting in

f̂ = arg min
f

∫
Ω

(
I(y) −

∫
KΔσ(y,x)f(x)dx

)2

dy + μ

∫
Ω

(f(x) − I(T (x)))2 dx.

(16)

The computation of the unknown unblurred image f can then be done by performing a
gradient descent on eq. (16) with the following energy gradient:

∇fE(x)=−2
�

Ω

�
I(y) −

�
KΔσ(y,x′)f(x′)dx′

�
KΔσ(y,x)dy+2μ (f(x) − I(T (x))) .

(17)

6 Experiments

We test our algorithm on both synthetic and real data. In the case of synthetic data, we
show the average performance of the method on 50 experiments with fixed shape and
variable texture. In Figure 4 we show one example of the texture that has been employed
in the generation of the synthetic images (a), together with the corresponding blurred
image (b). In (c) we show the true depth map which can be compared to the recovered
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a b c d

e f g h

Fig. 4. One example of synthetic defocus inpainting. (a) The true unblurred image. (b) The input
image. (c) The true depth map. (d) The recovered depth map. (e) and (f) the true correspondence
map T where (e) corresponds to the x coordinates and (f) to the y coordinates. (g) and (h) the
recovered correspondence map.

depth map in (d). In (e) and (f) we show the true correspondence map T where (e)
corresponds to the x coordinates and (f) to the y coordinates; in (g) and (h) we show the
recovered correspondence map. In Figure 5 we show a few snapshots of the restoration
of one example (shown in Figure 4). On the leftmost image we show the given blurred
image, while on the rightmost image we show the true unblurred texture.

We find that the mean restoration error is of 0.1441 with standard deviation of
0.0116, which, once compared to the error between the input image and the true un-
blurred image 0.3183 with standard deviation of 0.0177, shows an improvement of
more that 2 times.

In the case of real experiments, we run our algorithm on images of the endothelium
cell layer, that were acquired from several corneas at the Cornea Bank Berlin using
an inverse phase-contrast microscope (CK 40, Olympus Co. Japan) at 100x and 200x
magnification, and thus are subject to a substantial amount of defocus. The corneas
were kept in hypotonic BSS for a better microscopy visualization of the endothelial

Fig. 5. Snapshots of the restoration process. For comparison, on the leftmost image we show the
input image, while on the rightmost image we show the true unblurred image. In the middle we
show the evolution of the gradient descent presented in section 5. Iteration time increases going
from left to right.
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Fig. 6. (top row - left) Image of a cornea. Notice that in some portions of the image the cells are
more defocused than in other locations due to the change in depth of the surface. (right) Restored
image of the cornea. Notice that cells that were blurred in the original image are now restored and
resemble other cells in the same image (data kindly provided by Fondazione Banca degli Occhi
di Venezia. Italy). (second row) Visualization of the estimated correspondence map. (left) image
showing the x coordinates of T . (right) image showing the y coordinates of T . Dark intensities
correspond to lower values of the coordinates and vice versa for light intensities. Recall that the
map T (x) assigns a sharp patch at T (x) to the blurred patch at x. (bottom row) Visualization
of the reconstructed blur map. Light intensities correspond to large amounts of blur, while dark
intensities to low amounts of blur.

cells by osmotic stimulation of their cell membranes. In Figure 6 on the top row we
show the input image (left) and the restored image (right). Notice that in the input
image some location are more blurred than others due to changes in the depth of the
cornea. Furthermore, notice that in the restored image most of the blurred cells are
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Fig. 7. Examples of defocus inpainting on various images. (left) Input image. (right) Restored
image.

restored and resemble the appearance of similar cells that are sharper. In Figure 6, sec-
ond row, we show the estimated correspondence map T . For ease of visualization, the
coordinates of this map are shown as two grayscale images. Notice that the algorithm
detects that most sharp patches are located on the right of the input image, and that
most of the blurred patches are located on the left. In Figure 6, third row, we show the
estimated blur map of the scene. Notice that light intensities correspond to regions that
are subject to a large amount of blur, while dark intensities correspond to regions that
are subject to small amounts of blur. By visual inspection it is possible to verify that the
recovered blur map correctly assigns high values to regions that are blurred in the input
image.

In Figure 7 we show a number of examples where the left images are the input
images, and the right images are the restored ones.



Defocus Inpainting 359

7 Conclusions

We introduced a novel paradigm for image restoration, where regularization is extracted
directly from data. We exploit the assumption that the image contains recurrences of
patterns that are similar up to translation and amount of defocus, and show how to
model them in the context of defocused images. Then, we propose a novel solution to
identify the recurring patterns, to estimate their difference in amount of blur and finally
to restore the unblurred image. Our method can also be readily extended to work with
multiple images, and we are currently working on handling similarity up to scale and
rotations in addition to translations.
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