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Abstract. We propose a deep learning approach to remove motion blur from
a single image captured in the wild, i.e., in an uncontrolled setting. Thus, we
consider motion blur degradations that are due to both camera and object motion,
and by occlusion and coming into view of objects. In this scenario, a model-
based approach would require a very large set of parameters, whose fitting is a
challenge on its own. Hence, we take a data-driven approach and design both a
novel convolutional neural network architecture and a dataset for blurry images
with ground truth. The network produces directly the sharp image as output and is
built into three pyramid stages, which allow to remove blur gradually from a small
amount, at the lowest scale, to the full amount, at the scale of the input image.
To obtain corresponding blurry and sharp image pairs, we use videos from a high
frame-rate video camera. For each small video clip we select the central frame as
the sharp image and use the frame average as the corresponding blurred image.
Finally, to ensure that the averaging process is a sufficient approximation to real
blurry images we estimate optical flow and select frames with pixel displacements
smaller than a pixel. We demonstrate state of the art performance on datasets with
both synthetic and real images.

1 Introduction

This work is concerned with the removal of blur in real images. We consider the chal-
lenging case where objects move in an arbitrary way with respect to the camera, and
might be occluded and/or come into view. Due to the complexity of this task, prior work
has looked at specific cases, where blur is the same everywhere (the shift-invariant
case), see e.g., [35, 26], or follows given models [20, 34] and scenarios [15, 28, 38].
Other methods address the modeling complexity by exploiting multiple frames, as in,
for example, [16]. Our objective, however, is to produce high-quality results as in [16]
by using just a single frame (see Fig. 1). To achieve this goal we use a data-driven ap-
proach, where a convolutional neural network is trained on a large number of blurred-
sharp image pairs. This approach entails addressing two main challenges: first, the de-
sign of a realistic dataset of blurred-sharp image pairs and second, the design of a suit-
able neural network that can learn from such dataset. We overcome the first challenge
by using a commercial high frame-rate video camera (a GoPro Hero5 Black). Due to the
high frame-rate, single frames in a video are sharp and motion between frames is small.
Then, we use the central frame as the sharp image and the average of all the frames
in a video clip as the corresponding blurry image. To avoid averaging frames with too
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Fig. 1: (a) Blurry video frame. (b) Result of [34] on the single frame (a). (c) Result of
the proposed method on the single frame (a). (d) Result of the multi-frame method [16].

much motion, which would correspond to unrealistic motion blurs, we compute the op-
tical flow between subsequent frames and use a simple thresholding strategy to discard
frames with large displacements (more than 1 pixel). As we show in the Experiments
section, a dataset built according to this procedure allows training a neural network
and generalizes to images from other camera models and scenes. To address the sec-
ond challenge, we build a neural network that replicates (scale-space) pyramid schemes
used in classical deblurring methods. The pyramid exploits two main ideas: one is that
it is easy to remove a small amount of blur, and the second is that downsampling can be
used to quickly reduce the blur amount in a blurry image (within some approximation).
The combination of these two contributions leads to a method achieving state of the art
performance on the single image space-varying motion blur case.

1.1 Related work

Camera Motion. With the success of the variational Bayesian approach of Fergus et
al. [9], a large number of blind deconvolution algorithms have been developed for mo-
tion deblurring [2, 5, 25, 35, 29, 26, 44, 41]. Although blind deconvolution algorithms
consider blur to be uniform across the image, some of the methods are able to handle
small variations due to camera shake [23]. Techniques based on blind deconvolution
have been adapted to address blur variations due to camera rotations by defining the blur
kernel on a higher dimensional space [11, 12, 38]. Another approach to handle camera
shake induced space-varying blur is through region-wise blur kernel estimation [13,
18]. In 3D scenes, motion blur at a pixel is also related to its corresponding depth. To
address this dependency, Hu et al. and Xu and Jia [15, 42] first estimate a depth map
and then solve for the motion blur and the sharp image. In [45], motion blur due to for-
ward or backward camera motion has been explicitly addressed. Notice that blur due to
moving objects (see below) cannot be represented by the above camera motion models.
Dynamic Scenes. This category of blur is the most general one and includes motion
blur due to camera or object motion. Some prior work [24, 6] addresses this problem by
assuming that the blurred image is composed of different regions within which blur is
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uniform. Techniques based on alpha matting have been applied to restore scenes with
two layers [7, 37]. Although these methods can handle moving objects, they require
user interaction and cannot be used in general scenarios where blur varies due to cam-
era motion and scene depth. The scheme of Kim et al. [19] incorporates alternating
minimization to estimate blur kernels, latent image, and motion segments. Even with a
general camera shake model for blurring, the algorithm fails in certain scenarios such as
forward motion or depth variations [20]. In [20] Kim and Lee, propose a segmentation-
free approach but assume a uniform motion model. The authors propose to simultane-
ously estimate motion flow and the latent image using a robust total variation (TV-L1)
prior. Through a variational-Bayesian formulation, Schelten and Roth [30] recover both
defocus as well as object motion blur kernels. Pan et al. [27] propose an efficient algo-
rithm to jointly estimate object segmentation and camera motion by incorporating soft
segmentation, but require user input. [4, 10, 33] address the problem of segmenting an
image into different regions according to blur. Recent works that use multiple frames
are able to handle space-varying blur quite well [16, 39].
Deep Learning Methods. The methods in [32, 43] address non-blind deconvolution
wherein the sharp image is predicted using the blur estimated from other techniques.
In [31], Schuler et al. develop an end-to-end system that learns to perform blind de-
convolution. Their system consists of modules to extract features, estimate the blur and
to perform deblurring. However, the performance of this approach degrades for large
blurs. The network of Chakrabarti [3] learns the complex Fourier coefficients of a de-
convolution filter for an input patch of the blurry image. Hradiš et al. [14] predict
clean and sharp images from text documents that are corrupted by motion blur, defocus
and noise through a convolutional network without an explicit blur estimation. This ap-
proach has been extended to license plates in [36]. [40] proposes to learn a multi-scale
cascade of shrinkage fields model. This model however does not seem to generalize to
natural images. Sun et al. [34] propose to address non-uniform motion blur represented
in terms of motion vectors.

Our approach is based on deep learning and on a single input image. However, we
directly output the sharp image, rather than the blur, do not require user input and work
directly on real natural images in the dynamic scene case. Moreover, none of the above
deep learning methods builds a dataset from a high frame-rate video camera. Finally,
our proposed scheme achieves state of the art performance in the dynamic scene case.

2 Blurry Images in the Wild

One of the key ingredients in our method is to train our network with an, as much
as possible, realistic dataset, so that it can generalize well on new data. As mentioned
before, we use a high resolution high frame-rate video camera. We build blurred images
by averaging a set of frames. Similar averaging of frames has been done in previous
work to obtain data for evaluation [21, 1], but not to build a training set. [21] used
averaging to simulate blurry videos, and [1] used averaging to synthesize blurry images,
coded exposure images and motion invariant photographs.

We use a handheld GoPro Hero5 Black camera, which captures 240 frames per
second with a resolution of 1280×720 pixels. Our videos have been all shot outdoors.
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Fig. 2: A sample image pair from the WILD training set. Left: averaged image (the
blurry image). Right: central frame (the sharp image).
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Fig. 3: The DeblurNet architecture. The multiscale scheme allows the network to handle
large blurs. Skip connections (bottom links) facilitate the generation of details.

Firstly, we downsample all the frames in the videos by a factor of 3 in order to reduce
the magnitude of relative motion across frames. Then, we select the number Ne of
averaged frames by randomly picking an odd number between 7 and 23. Out of the Ne

frames, the central frame is considered to be the sharp image. We assume that motion
is smooth and, therefore, to avoid artifacts in the averaging process we consider only
frames where optical flow is no more than 1 pixel. We evaluate optical flow using the
recent FlowNet algorithm [8] and then apply a simple thresholding technique on the
magnitude of the estimated flow. Fig. 2 shows an example of the sharp and blurred
image pair in our training dataset. In this scene, we find both the camera and objects to
be moving. We also evaluate when the optical flow estimate is reliable by computing
the frame matching error (L2 norm on the grayscale domain). We found that no frames
were discarded in this processing stage (after the previous selection step). We split our
WILD dataset into training and test sets.

3 The Multiscale Convolutional Neural Network

In Fig. 3 we show our proposed convolutional neural network (CNN) architecture.
The network is designed in a pyramid or multi-scale fashion. Inspired by the multi-
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N1 N2 N3

Type conv conv conv conv conv conv conv conv conv conv conv deconv conv conv conv conv deconv
OutCh 96 256 384 384 256 256 3 256 256 256 256 3 256 256 256 256 3
Kernel 11 7 7 7 3 3 3 5 5 5 5 5 5 5 5 5 5
Stride ↓ 2 1 1 ↓ 2 1 1 1 1 1 1 1 ↑ 2 1 1 1 1 ↑ 2

Table 1: The DeblurNet architecture. Batch normalization and ReLU layers inserted
after every convolutional layer (except for the last layer of N1) are not shown for sim-
plicity. Downsampling (↓) is achieved by using a stride greater than 1 in convolutional
layers. A stride greater than 1 in deconvolutional (↑) layers performs upsampling.

scale processing of blind deconvolution algorithms [26, 31], we introduce three sub-
graphs N1, N2, and N3 in our network, where each subgraph includes several convo-
lution/deconvolution (fractional stride convolution) layers. The task of each subgraph
is to minimize the reconstruction error at a particular scale. There are two main dif-
ferences with respect to conventional CNNs, which play a significant role in generating
sharp images without artifacts. Firstly, the network includes a skip connection at the end
of each subgraph. The idea behind this technique is to reduce the difficulty of the re-
construction task in the network by using the information already present in the blurry
image. Each subgraph needs to only generate a residual image, which is then added
to the input blurry image (after downsampling, if needed). We observe experimentally
that the skip connection technique helps the network in generating more texture details.
Secondly, because the extent of blur decreases with downsampling [26], the multi-scale
formulation allows the network to deal with small amounts of blur in each subgraph. In
particular, the task for the first subgraph N1 is to generate a deblurred image residual at
1/4 of the original scale. The task for the subgraph N2 is to use the output of N1 added
to the downsampled input and generate a sharp image at 1/2 of the original resolution.
Finally, the task for the subgraph N3 is to generate a sharp output at the original reso-
lution by starting from the output of N2 added to the input scaled by 1/2. We call this
architecture the DeblurNet and give a detailed description in Tab. 1.
Training. We minimize the reconstruction error of all the scales simultaneously. The
loss function L = L1 + L2 + L3 is defined through the following 3 losses

L1 =
∑

(g,f)∈D
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where D is the training set, g denotes a blurry image, f denotes a sharp image, D 1
k
(x)

denotes the downsampling operation of the image x by factor of k, and Ni indicates the
i-th subgraph in the DeblurNet, which reconstructs the image at the i-th scale.
Implementation Details. We used Adam [22] for optimization with momentum pa-
rameters as β1 = 0.9, β2 = 0.999, and an initial learning rate of 0.001. We decrease
the learning rate by .75 every 104 iterations. We used 2 Titan X for training with a batch
size of 10. The network needs 5 days to converge using batch normalization [17].
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4 Experiments

We tested DeblurNet on three different types of data: a) the WILD test set (GoPro Hero5
Black), b) real blurry images (Canon EOS 5D Mark II), and c) data from prior work.
Synthetic vs pseudo-real training. To verify the impact of using our proposed aver-
aging to approximate space-varying blur, we trained another network with the same
architecture as in Fig. 3. However, we used blurry-sharp image pairs, where the blurry
image is obtained synthetically via a shift-invariant convolutional model. As in [3], we
prepared a set of 105 different blurs. During training, we randomly pick one of these
motion blurs and convolve it with a sharp image (from a mixture of 50K sharp frames
from our WILD dataset and 100K cityscapes images1) to generate blurred data. We
refer to this trained network as the DeblurNetSI, where SI stands for shift-invariant
blur. A second network is instead trained only on the blurry-sharp image pairs from
our WILD dataset (a total of 50K image pairs obtained from the selection and averag-
ing process on the GoPro Hero5 Black videos). This network is called DeblurNetWILD,
where WILD stands for the data from the WILD dataset. As will be seen later in the
experiments, the DeblurNetWILD network outperforms the DeblurNetSI network despite
the smaller training set and the fact that the same sharp frames from the WILD dataset
have been used. Therefore, due to space limitations, often we will show only results of
the DeblurNetWILD network in the comparisons with other methods.
WILD test set evaluation. The videos in the test set were captured at locations different
from those where training data was captured. Also, incidentally, the weather conditions
during the capture of the test set were significantly different from those of the training
set. We randomly chose 15 images from the test-set and compared the performance of
our method against the methods in [41], [34], the space-varying implementation of the
method in [44], and DeblurNetWILD trained network. An example image is shown in
Fig. 4. As can be observed, blur variation due to either object motion or depth changes
is the major cause of artifacts. Our DeblurNetWILD network, however, produces artifact-
free sharp images. While the example in Fig. 4 gives only a qualitative evaluation, in
Table 2 we report quantitative results.

[34] [41] [44] DeblurNetSI DeblurNetWILD

25.48 23.61 22.50 25.8 28.1

Table 2: Average PSNR on our WILD test set.

We measure the perfor-
mance of all the above meth-
ods in terms of Peak Signal-to-
Noise Ratio (PSNR) by using
the reference sharp image as in
standard image deblurring per-
formance evaluations. We can
see that the performance of the
DeblurNetWILD is better than that of the DeblurNetSI. This is not surprising because the
shift-invariant training set does not capture factors such as reflections/specularities, the
space-varying blur, occlusions and coming into view of objects. Notice that the PSNR
values are not comparable to those seen in shift-invariant deconvolution algorithms.
Qualitative evaluation. On other available dynamic scene blur datasets the ground
truth is not available. Therefore, we can only evaluate our proposed network qualita-

1 www.cityscapes-dataset.com
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: An example from the WILD test set. (a) blurry image, (b) sharp image (ground
truth), (c) Xu and Jia [41], (d) Xu et al. [44], (e) Sun et al. [34], (f) DeblurNetWILD.

tively. We consider 2 available datasets and images obtained from a Canon EOS 5D
Mark II camera. While Figs. 5 and 7 show data from [34] and [20] respectively, Fig. 6
shows images from the Canon camera. In Fig. 6, we compare the methods of [41], [34]
and [44] to both our DeblurNetSI and DeblurNetWILD networks. In all datasets, we ob-
serve that our method is able to return sharper images with fine details. Furthermore,
we observe that in Fig. 6 the DeblurNetWILD network produces better results than the
DeblurNetSI network, which confirms once more our expectations.

Shift-invariant blur evaluation. We provide a brief analysis on the differences be-
tween dynamic scene deblurring and shift-invariant motion deblurring. We use an ex-
ample from the standard dataset of [23], where blur is due to camera shake (see Fig. 8).
In the case of a shift-invariant blur, there are infinite {blur, sharp image} pairs that yield
the same blurry image when convolved. More precisely, an unknown 2D translation
(shift) in a sharp image f can be compensated by an opposite 2D translation in the blur
kernel k, that is, ∀∆, g(x) =

∫
f(y + ∆)k(x − y − ∆)dy. Because of such ambigu-

ity, current evaluations compute the PSNR for all possible 2D shifts of f and pick the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Test set from [20]. (a,e) Blurry image; (b,f) Kim and Lee [20]; (c,g) Sun et al.
[34]; (d,h) DeblurNetWILD.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Test set from the Canon camera. (a) Blurry image; (b) Xu et al. [44]; (c) Sun et
al. [34]; (d) Xu and Jia [41]; (e) DeblurNetSI; (f) DeblurNetWILD.
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(a) (b) (c)

Fig. 7: Test dataset from [34]. (a) Blurry image, (b) Sun et al. [34], (c) DeblurNetWILD.

(a) (b) (c) (d)

Fig. 8: Kohler dataset [23] (image 1, blur 4). (a) our result. (b) ground truth. (c,d)
Zoomed-in patches. Local ambiguous shifts are marked with white arrows.

highest PSNR. The analogous search is done for camera shake [23]. However, with a
dynamic scene we have ambiguous shifts at every pixel (see Fig. 8) and such search is
unfeasible (the image deformation is undefined). Therefore, all methods for dynamic
scene blur would be at a disadvantage with the current shift-invariant blur evaluation
methods, although their results might look qualitatively good.
Analysis. Our network generates a residual image that when added to the blurry input
yields the sharp image. Therefore, we expect the magnitude of the residual to be large
for very blurry images, as more changes will be required. To validate this hypothesis
we perform both quantitative and qualitative experiments. We take 700 images from
another WILD test set (different from the 15 images used in the previous quantitative
evaluation), provide them as input to the DeblurNetWILD network, and calculate the L1

norm of the network residuals (the output of the last layer of N3). In Fig. 10 we show
two images, one with the highest and one with the lowest L1 norm. We see that the
residuals with the highest norms correspond to highly blurred images, and vice versa
for the low norm residuals. We also show quantitatively that there is a clear correlation
between the amount of blur and the residual L1 norm. As mentioned earlier on, our
WILD dataset also computes an estimate of the blurs by integrating the optical flow.
We use this blur estimate to calculate the average blur size across the blurry image.
This gives us an approximation of the overall amount of blur in an image. In Fig. 9 we
show the plot of the L1 norm of the residual versus the average estimated blur size for
all 700 images. The residual magnitudes and blur sizes are normalized so that mean and
standard deviation are 0 and 1 respectively.
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Fig. 9: Normalized average blur size versus normalized residual magnitude plot. Notice
the high level of correlation between the blur size and the residual magnitude.

Fig. 10: The images with highest (first row) and lowest (second row) residual norm in
the output layer. The image in the first column is the input, the second column shows
the estimated residual (the network output), the third column is the deblurred image
(first column + second column), and finally the forth column is the ground truth.

5 Conclusions

We proposed DeblurNet, a novel CNN architecture that regresses a sharp image given
a blurred one. DeblurNet is able to restore blurry images under challenging conditions,
such as occlusions, motion parallax and camera rotations. The network consists of a
chain of 3 subgraphs, which implement a multiscale strategy to break down the com-
plexity of the deblurring task. Moreover, each subgraph outputs only a residual image
that yields the sharp image when added to the input image. This allows the subgraph
to focus on small details as confirmed experimentally. An important part of our solu-
tion is the design of a sufficiently realistic dataset. We find that simple frame averaging
combined with a very high frame-rate video camera produces reasonable blurred-sharp
image pairs for the training of our DeblurNet network. Indeed, both quantitative and
qualitative results show state of the art performance when compared to prior dynamic
scene deblurring work. We observe that our network does not generate artifacts, but
may leave extreme blurs untouched.

Acknowledgements. Paolo Favaro acknowledges support from the Swiss National Sci-
ence Foundation on project 200021 153324.



Motion Deblurring in the Wild 11

References

1. Agrawal, A., Raskar, R.: Optimal single image capture for motion deblurring. In: CVPR
(2009)

2. Babacan, S.D., Molina, R., Do, M.N., Katsaggelos, A.K.: Bayesian blind deconvolution with
general sparse image priors. In: ECCV (2012)

3. Chakrabarti, A.: A neural approach to blind motion deblurring. In: ECCV (2016)
4. Chakrabarti, A., Zickler, T., Freeman, W.T.: Analyzing spatially-varying blur. In: CVPR

(2010)
5. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 1–8 (2009)
6. Couzinie-Devy, F., Sun, J., Alahari, K., Ponce, J.: Learning to estimate and remove non-

uniform image blur. In: CVPR (2013)
7. Dai, S., Wu, Y.: Removing partial blur in a single image. In: CVPR (2009)
8. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt,

P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional networks. In:
CVPR (2015)

9. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake
from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

10. Gast, J., Sellent, A., Roth, S.: Parametric object motion from blur. arXiv preprint
arXiv:1604.05933 (2016)

11. Gupta, A., Joshi, N., Zitnick, L., Cohen, M., Curless, B.: Single image deblurring using
motion density functions. In: ECCV (2010)

12. Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.: Efficient filter flow for space-variant mul-
tiframe blind deconvolution. In: CVPR (2010)

13. Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera
shake. In: ICCV (2011)
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