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Abstract—Portable light field (LF) cameras have demonstrated capabilities beyond conventional cameras. In a single snapshot, they

enable digital image refocusing and 3D reconstruction. We show that they obtain a larger depth of field but maintain the ability to

reconstruct detail at high resolution. In fact, all depths are approximately focused, except for a thin slab where blur size is bounded, i.e.,

their depth of field is essentially inverted compared to regular cameras. Crucial to their success is the way they sample the LF, trading

off spatial versus angular resolution, and how aliasing affects the LF. We show that applying traditional multiview stereo methods to the

extracted low-resolution views can result in reconstruction errors due to aliasing. We address these challenges using an explicit image

formation model, and incorporate Lambertian and texture preserving priors to reconstruct both scene depth and its superresolved

texture in a variational Bayesian framework, eliminating aliasing by fusing multiview information. We demonstrate the method on

synthetic and real images captured with our LF camera, and show that it can outperform other computational camera systems.

Index Terms—Computational photography, superresolution, deconvolution, blind deconvolution, multiview stereo, shape from

defocus.

Ç

1 INTRODUCTION

RECENTLY, we have seen that not only is it possible to
build practical integral imaging and mask enhanced

systems based on commercial cameras [1], [2], [3], [4], but
also that such cameras provide an advantage over tradi-
tional imaging systems. The insertion of a microlens array in
a conventional camera results in a plenoptic or light field (LF)
camera. These designs enable new imaging modalities, for
instance, digital refocusing [3] and the recovery of transpar-
ent objects in microscopy [5] from a single snapshot.

Surprisingly, the LF camera design enables a dramatic
depth of field (DoF) extension. In a regular camera, blur is
small only close to the focal plane in space and grows very
large elsewhere; in the LF camera, blur behaves in exactly the
opposite manner: It is small everywhere except nearby the
focal plane, where it is bounded by the microlens size (see
Fig. 2).

Unfortunately, existing approaches to producing ex-
tended DoF images from Plenoptic cameras suffer from a
number of drawbacks, such as rendering images only at the
microlens array resolution [3] or dealing with blur by
requiring small microlens apertures that sacrifice light [6].
We investigate a method to obtain both depth maps and
high resolution extended DoF images from a single
plenoptic exposure.

Our strategy to enhance resolution is to exploit the fact
that LFs of natural scenes are not a collection of random
signals. Rather, they generally satisfy models of limited
complexity [7], such as the Lambertian model we consider
here. We notice that an LF can be interpreted as a collection
of views with unknown shifts between them (see Fig. 1)
containing complementary, but related, information. We
can fuse this information with a superresolution (SR)
algorithm to recover the high-resolution image. Solving
the SR problem requires recovering the shifts, or in our case,
the depth map of the scene, but this converts the original
problem of DoF extension into a simpler one, compared to a
regular camera where the corresponding blind deconvolu-
tion problem is more ill posed.

Thus, we propose a two stage algorithm where we first
recover the depth by establishing correspondence between
the views, and then use this to form the space-varying
point spread function (PSF) model, which is employed in a
Bayesian deconvolution approach to estimate the SR
extended DoF image. We will study the sampling patterns
involved, how aliasing affects the views, and under what
conditions we can hope to obtain good SR results. In [1], it
is noted that plenoptic cameras tend to avoid the aliasing
of angular samples that is experienced with a camera
array, but do not consider spatial aliasing (as in Fig. 3),
which makes aligning the views problematic.1 We propose
an iterative depth-dependent antialiasing method to solve
this challenge. Our analysis also shows that the samples in
an LF camera periodically overlap, which results in the
reconstruction quality of an all-in-focus image varying
periodically with depth (see Fig. 16). Nevertheless, the
method still outperforms competing systems at these
depths.
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1. On the contrary, note the well-known spatio-angular information
tradeoff: In fact, it is only because the views are aliased that superresolved
refocused images may be obtained since they contain new information.
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2 PRIOR WORK AND CONTRIBUTIONS

This work relates to computational photography, an emerging
field encompassing several methods to enhance the
capabilities and overcome limitations of standard digital
photography by jointly designing imaging devices and
reconstruction algorithms. One of the first devices based
on the principles of integral photography [8] is the
plenoptic camera, proposed in computer vision by Adelson
and Wang [1] to infer depth in a single snapshot, and more
recently engineered into a single package chip [9]. In its
original design, the plenoptic camera consists of a camera
body with a single main lens, a lenticular array at its focal
plane, and an additional relay lens to form the image on a
sensor. Ng et al. [3] present a similar design, but in a
portable hand-held device, and propose digital refocusing,
i.e., the ability to change the focus setting after capturing
the image. While their method yields impressive results,
there is one caveat: The spatial resolution of the refocused
images is lower than that of the image sensor, just equal to
the number of microlenses in the camera—e.g., as low as
90K pixels from a 16MP camera.

An alternative to the plenoptic camera is the program-

mable aperture camera [10], which captures LF data by
multiplexing views of the scene. While this approach allows
recovery of images at full sensor resolution, the price to pay
is a long exposure time or a low (SNR). More importantly,
the scene has to be static. If motion occurs, views must be

aligned, which adds further complexity and computational
cost to the system. Another interesting design proposed by
Veeraraghavan et al. [4] is the heterodyne camera, where
the LF is modulated using an attenuating mask close to the
sensor plane. The authors mention an advantage of this
system is the reconstruction of high-resolution images at the
plane in focus in addition to the sampled light field, but
with a considerable limitation: The SNR is much reduced
due to light attenuation at the mask. Georgiev and Intwala
[2] suggest variants on the LF camera design. Instead of
internal microlenses, they add optics external to the main
lens, such as arrays of positive/negative lenses or prisms.
Unfortunately, while appealing in their simplicity, these
designs are bulky and tend to suffer from higher order
optical aberrations. Ben-Ezra et al. [11] propose a novel
resolution-enhancing design, which captures multiple
frames, shifted by known subpixel amounts. To achieve
this without motion blur, microactuators instantaneously
shift the sensor before capturing each frame. The frames are
combined to reconstruct a single high-resolution image. As
in [10], this method trades off exposure time for spatial
resolution. Other optical designs such as wavefront coding
[12] and focal sweep [13] have been proposed that attempt
to recover all-focused images via approximately depth-
invariant blurs that are easily deconvolved. This offers a
simplified approach but does not give the possibility of
refocusing, as the depth map cannot be estimated.

One could also aim to improve the sampled LF resolution
by designing algorithms, rather than hardware, that exploit
prior knowledge about the scene. We rely on reconstructing
the depth map and pose the problem as superresolving the
LF, starting from multiple low-resolution images with
unknown translations. This approach relates to a large bulk
of image processing literature [14], [15], [16], [17], [18], [19].
However, in the computational photography field, prior
work is limited to: Chan et al. [20], where a compound eye
system is only simulated, Levin et al. [7], who describe
tradeoffs between different camera designs for LF recovery,
and Lumsdaine and Georgiev’s method [21] for rendering
high-resolution images from a plenoptic camera.

In [21], the authors discuss when subimages under each
microlens are flipped (telescopic) or not (binocular), then
scale up their central part, assuming that the scene is at a
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Fig. 2. Conventional versus LF camera. The size of the blur disc in a
conventional camera increases quickly away from the plane in focus ((a)
635 mm, (b) 5 m). The camera has an 80 mm main lens at f/3.2 (thin
lines) or f/6.3 (thick lines). By comparison, the blur under each microlens
in the LF camera remains small over most depths, irrespective of main
lens f/#. Its size (see (11)) behaves in the opposite manner to the regular
camera blur, obtaining a maximum around the main lens plane in focus.

Fig. 1. Top row: (a) One view from our LF image, (b) detail of
corresponding LF image, (c) detail of central view, (one pixel per
microlens, as in a traditional rendering [3]). Bottom row: (a) Estimated
depth map (scale in meters), (b) above LF image rearranged as views,
(c) superresolved central view.

Fig. 3. Example of plenoptic view aliasing. (a) One view extracted from
an LF image (courtesy of Lumsdaine and Georgiev [6]) with one region
enlarged at the bottom. (b) Another view from the same data set (along
the horizontal axis). Notice the aliasing affecting these views. Establish-
ing correspondence for depth inference in these views is therefore prone
to errors.



constant user-defined depth plane. This approach does not
fully address LF superresolution. First, no depth map (i.e.,
the alignment between subimages) is estimated. Second,
they only use interpolation to restore the LF, without
deconvolution, meaning that overlapping subimage pixels
are dropped or averaged instead of being fused. Without
deconvolution, small apertures are required on the micro-
lenses which does not efficiently use available light.
Moreover, their results are not attained under a globally
consistent restoration model, and no regularization is used.
We will see in Fig. 17 that this is suboptimal.

In concurrent work, Levin et al. [7] describe analysis and
algorithms closely related to our method. They focus on the
tradeoffs in recovering the LF of a scene by comparing
different camera designs and consider the use of priors in a
Bayesian framework. Our approach differs in several ways:
First, we derive and fully analyze an LF camera image
formation model and verify its validity on real images;
second, we explicitly enforce Lambertianity and use image
texture priors that are unlike their mixture of Gaussians
derivative priors.

Aliasing in systems similar to the plenoptic camera has
been analyzed before. In particular, researchers have studied
how camera geometry affects the sampling pattern. Georgiev
and Lumsdaine [22] consider the choice of sensor-to-
microlens spacing in a plenoptic camera. The magnification
for different image planes inside the camera is then
investigated, along with the depth of focus (although the
scene DoF is not explicitly computed). Stewart et al. [23]
examine aliasing of LFs sampled by camera arrays, suggest-
ing that sufficiently large apertures (equal to the intercamera
spacing) and pixels with full fill-factor provide the required
prealiasing, so long as only one scene depth needs to be in
focus. Stewart et al. [24] describe LF rendering methods to
deal with such aliasing when these conditions are not met,
based on combining band-limited [25] and wide-aperture
[26] reconstructions. However, these methods do not con-
sider using the depth map in the LF reconstruction—which
the recovery of a high-resolution all-focused image requires
(e.g., when the focal plane is moved in [24, Figs. 7c and 7e]).

In [25], Chai et al. study the sampling rates required to
avoid aliased LF rendering, observing (as we do) that
correct antialiasing is depth dependent. We emphasize,
however, that the sampling pattern in a plenoptic camera
leads to different requirements. Ng [27] discusses postalias-
ing artifacts, resulting from approximate LF refocusing.
Adelson and Wang’s pioneering work [1] estimated depth
from the LF views, but without considering aliasing. Vaish
et al. [28] perform multiview depth estimation from an
array of about a hundred cameras, a system that is
structurally similar to a plenoptic camera. However, we
will see some fundamental differences in the aliasing of LFs
captured by the two systems.

To the best of our knowledge, none of the prior work,
with the exception of the initial versions of this work [29]
and [30], covered the following contributions of our paper:

1. an explicit image formation model obtained by
characterizing the spatially varying PSF of a plenop-
tic camera under Gaussian optics assumptions for a
depth varying scene;

2. novel analysis of aliasing in views and the DoF of
a plenoptic camera (that takes into account
sampling and the nonnegligible blur generated by
the microlenses);

3. a method to reconstruct the light field in a Bayesian
framework, explicitly introducing Lambertian reflec-
tance priors in the image formation model; notice
this allows us to design an SR algorithm which
recovers more information than the one predicted by
the basic sampling theorem;

4. a method to reduce aliasing of views via space-
varying filtering of the recorded LF, and an iterative
multiview depth estimation procedure, that benefits
from this reduction;

5. a comparison of the actual resolution attainable at
different depths with the SR approach versus other
methods. We demonstrate that the LF camera out-
performs regular, coded aperture, and focal sweep
cameras, in noisy conditions.

Note that our approach is general and not designed for any
particular camera settings, although well-chosen para-
meters will likely give better results for a particular working
depth range. One limitation of the depth estimation method
is that the depth map is only found at the microlens array
resolution, but this is often sufficient in practice. Currently,
we do not model occlusions; this could be handled with a
revision of our framework; however, for typical lens
apertures the amount of occlusion present does not
generate significant artifacts in our experiments.

We begin in Section 3 with a general overview of our
approach to plenoptic depth estimation and SR. We
provide definitions used in our model in Section 4, and
describe how scene points map to the sensor using an
equivalent internal representation. In Section 5, we de-
scribe several effects governed by the choice of camera
parameters, and their relation to restoration quality. In
Section 6, we analyze two interpretations of the LF data: as
views or subimages, considering how sampling introduces
aliasing, making depth estimation challenging. We define
ideal and practical antialiased filtering solutions that we
use in our regularized depth map estimation solution.
From this depth map and the optical model we compute
the camera’s space-varying PSF matrix in Section 7.1,
which is used in our Bayesian image restoration algorithm
in Section 7.2. Finally, we present experimental results with
both algorithms in Section 8.

3 SUPERRESOLUTION AND DEPTH ESTIMATION WITH

THE LIGHT FIELD CAMERA

In this section, we outline how we will tackle the SR and
depth estimation tasks, leaving most of the fine (but
important) details to later. In order to restore the images
obtained by the plenoptic imaging model at a resolution
that is higher than the number of microlenses, we need to
first determine an image formation model of such a system.
This model allows us to simulate a light field image llll given
the scene radiance (the all-focused image) rrrr and the space-
varying PSF matrix of the camera HHHHs. As will be shown in
the next sections, when there is no noise, these quantities
can be related via the simple linear relationship
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llll ¼ HHHHsrrrr; ð1Þ

where llll and rrrr are rearranged as column vectors. HHHHs embeds
both the camera geometry (e.g., its internal structure, the
number, size, and parameters of the optics) and the scene
disparity map ssss. In general, the only quantities directly
observable are the LF image llll and the camera geometry, and
one has to recover both rrrr and ssss. Due to the dimensionality of
the problem, in this manuscript we consider a two-step
approach where we first estimate the disparity map ssss and
then recover the radiance rrrr given ssss. In both steps, we
formulate inference as an energy minimization.

For now, assume that the disparity map ssss is known.
Then, one can employ (SR) by estimating rrrr directly from the
observations. Due to the fact that the problem may be
particularly ill-posed depending on the extent of the
complete system, proper regularization of the solution
through prior modeling of the image data is essential. We
can then formulate the estimation of rrrr in the Bayesian
framework. Under the typical assumption of additive
Gaussian observation noise wwww, the model becomes
llll ¼ HHHHsrrrrþ wwww, to which we can associate a conditional
probability funtion (PDF), the likelihood pðllllj rrrr;HHHHs:Þ.

We then introduce priors on rrrr. We use a recently
developed prior [31], [32], which can locally recover texture,
in addition to smooth and edge regions in the image. By
combining the prior pðrrrrÞ with the likelihood from the noisy
image formation model we can then solve the maximum
a posteriori (MAP) problem:

r̂rrr ¼ arg max
rrrr

pðllllj rrrr;HHHHsÞpðrrrrÞ: ð2Þ

The MAP problem requires evaluating HHHHs, which
depends on the unknown disparity map ssss. To obtain ssss we
consider extracting views (images from different view-
points) from the LF so that our input data are suitable for a
multiview geometry algorithm (see Section 6). The multi-
view depth estimation problem can then be formulated as
inferring a disparity map ssss ¼: fsðcccckkkkÞg by finding correspon-
dences between the views for each 2D location cccckkkk visible in
the scene. Let V̂qqqq denote the sampled view from the 2D
viewing direction qqqq and V̂qqqqðkkkkÞ the color measured at a pixel
kkkk within V̂qqqq. Then, as we will see, depth estimation can be
posed as the minimization of the joint matching error (plus
a suitable regularization term) between all combinations of
pairs of views:

EdataðssssÞ ¼
X
8qqqq1;qqqq2;kkkk

�ðV̂qqqq1
ðkkkkþ sðcccckkkkÞqqqq1Þ � V̂qqqq2

ðkkkkþ sðcccckkkkÞqqqq2ÞÞ;

ð3Þ

where � is some robust norm and qqqq1; qqqq2 are the 2D offsets
between each view and the central view (the exact
definition is given in Section 6.1). In practice, to save
computational effort, only a subset of view pairs fqqqq1; qqqq2g
may be used in (3). Notice that this definition of the 2D
offset implicitly fixes the central view as the reference frame
for the disparity map ssss.

As the views may be aliased, minimizing (3) is liable to
cause incorrect depth estimates around areas of high-
spatial frequency in the scene. Put simply, even when
scene objects are Lambertian and without the presence of
noise, the views might not satisfy the photoconsistency

criterion sufficiently well so that Edata may not have a
minimum at the true depth map. Moreover, subpixel
accuracy is usually obtained through interpolation. This
might be a reasonable approximation when the views
collect samples of a band-limited (i.e., sufficiently smooth)
texture. However, as shown in Fig. 3, this is not the case
with LF cameras. Therefore, we have to explicitly define
how samples are interpolated and study how this affects
the matching of views.

We shall also see that there are certain planes where the
sample locations from different views coincide. At these
planes, aliasing no longer affects depth estimation, but extra
information for (SR) is diminished.

4 IMAGE FORMATION OF A LIGHT-FIELD CAMERA

In this section, we derive the image formation model of a
plenoptic camera, and define the relationship between
different camera parameters. To yield a practical computa-
tional model suitable for our algorithm (Section 7), we
investigate the imaging process with tools from geometric
optics [33], ignoring diffraction effects, and using the thin
lens model. We will also analyze sampling of the LF camera
by using the phase-space domain [7].

4.1 Imaging Model

In our investigation, we rebuilt a light field camera similar
to that of Ng et al. [3]—essentially a regular camera with a
microlens array placed near the sensor (see Fig. 4)—but, as
in [21], we consider the imaging system under a general
configuration of the optical elements. However, unlike in
any previous work, we determine the image formation
model of the camera so that it can be used for SR or more
general tasks.

We use a general 3D scene representation (ignoring
occlusions), consisting of the all-focused image, or radiance,
rðuuuuÞ (as captured by a pinhole camera, i.e., with an
infinitesimally small aperture), plus a depth map zðuuuuÞ
associated with each point uuuu. Both r and z are defined at the
microlens array plane such that r is the all-focused image
that would be captured by a regular camera. In this way, we
can analyze both the PSF of each point in space (corre-
sponding to a column of HHHHs) and sampling and aliasing
effects in the captured LF with a less bulky notation. We
first consider the equivalence between using points in space

BISHOP AND FAVARO: THE LIGHT FIELD CAMERA: EXTENDED DEPTH OF FIELD, ALIASING, AND SUPERRESOLUTION 975

Fig. 4. (a) 2D Schematic of a LF camera. Rays from a point pppp are split
into several beams by the microlens array. (b) Three example images
corresponding to the colored planes in space (dashed) and their
conjugates (solid). Top: pppp0 before microlenses; subimages flipped.
Middle: pppp0 on microlenses; no repetitions. Bottom: pppp0 is virtual, beyond
the microlenses; no flipping.



or inside the camera (Section 4.1.1). Then, we specify
continuous and discrete versions of the coordinates used to
parameterize the captured LF. The reader already familiar
with the topic may skip this section.

4.1.1 Conjugate Object Representation

As stated above, we consider an equivalent representation
defined entirely inside the camera. Each point pppp ¼: ½x y z�T 2
IR3 in space has a unique corresponding conjugate point pppp0 ¼:

½x0 y0 z0�T 2 IR3 where its rays focus behind the lens, and thus
the two are interchangeable (Fig. 4). Therefore, a surface in
space corresponds to a conjugate surface z0ðuuuuÞ inside the
camera, parameterized by coordinates uuuu 2 IR2 on the micro-
lens plane. Consider the projection of a point in space on such
a surface. The thin lens law implies

pppp0 ¼ F

z� F

�1 0 0
0 �1 0
0 0 1

2
4

3
5pppp; ð4Þ

where F denotes the main lens focal length. The microlens
array is located at a distance v0 behind the main lens. It
consists of K1 �K2 microlenses, which we index with
kkkk ¼ ½k1; k2�T ; k1 2 f1 � � �K1g; k2 2 f1 � � �K2g. Their centers
are located at cccckkkk ¼ dkkkk, with spacing d. The projection iiii ¼
½i; j�T of pppp0 onto the sensor plane through a microlens at cccckkkk is
then computed as

iiii ¼ cccckkkk þ
v

v0 � z0 ðcccckkkk � ½x
0; y0�T Þ; ð5Þ

as shown in Fig. 5. Coordinates iiii, cccckkkk, and ½x0 y0�T all have
their origin in the center of the sensor, coinciding with the
optical axis.

4.1.2 Image Flipping

Consider for now that the microlenses have tiny apertures
behaving as pinholes (we consider microlens blur later).
Then each microlens subimage is a projection of a portion of
the conjugate image onto the sensor, with the relation
between points as in (5). This image may also be flipped
along both axes, with respect to the conjugate image2 (see
third row of Fig. 4). Flipping occurs when the direction of a
vector on the sensor �iiii disagrees with that of its projection
in the conjugate image, i.e., using �iiii ¼ � v

v0�z0 �½x0 y0�
T ,

when z0 < v0 (assuming that z0 > 0, i.e., objects in space are
further than F from the camera).

4.1.3 Angular Coordinates

We parameterize the 4D LF as in Fig. 6. We have defined
the 2D spatial coordinates uuuu; the continuous 2D angular
coordinates ���� 2 � � IR2 are locally defined on the sensor
plane relative to each microlens. � defines the set of ����
contained within the main lens aperture’s projection onto
the sensor, which we assume for now is square. ���� under
each microlens kkkk is defined so that it projects to the same
main lens position (the local origin ����0 is the projection of
the main lens center through cccckkkk).

3 Its discretized version is
����qqqq ¼: �qqqq, where � is the pixel width, qqqq ¼ ½q1; q2�T and
q1; q2 2 f�bðQ� 1Þ=2c; . . . ; 0; . . . ;þbðQ� 1Þ=2cg, with bac
the floor operator. ����qqqq indexes the sensor pixels relative to
each microlens, so that we have a total of Q2 angular
samples (when Q is odd).

4.1.4 Views and Subimages

The set of pixels, one per microlens, that map to the same
point on the main lens (i.e., with the same ����) form the image
V����ðccccÞ, which we term a view. The pixels under a microlens at
cccc form a subimage Sccccð����Þ. In Fig. 6, we represent the plenoptic
image formation process as a mapping between rðuuuuÞ and
each view or subimage. First, it is scaled down by z0

v0 to give
the conjugate images r0ðuuuu0Þ at z0. Each pixel is scaled to a
different conjugate image depending on the depth map at
that position. These are then sampled by the set of rays
passing through a point on the main lens or the microlenses;
we discuss this process further in Section 6.

If the main lens aperture and microlens spacing d are
chosen so that the subimages fully tile the sensor without
overlap, the subimage size is (see Fig. 7, left)

D
v

v0
¼ d v

0 þ v
v0

; thus Q ¼ d

�

v0 þ v
v0

: ð6Þ

Finally, we denote the discretized and lexicographically

ordered pixel coordinates by iiiim ¼ ½im; jm�T with m 2
f1 � � �Mg, where M ¼ Q2K1K2 and satisfy iiii ¼ �½im; jm�T .
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Fig. 5. (a) Imaging the conjugate object onto the sensor via one
microlens. (b) Defocus blur under one microlens. The radius b is
obtained by similar triangles.

Fig. 6. Coordinates and sampling in the plenoptic camera. (a) Radiance r,
at v0, projected through OO to the conjugate image r0 at z0. Bold rays
indicate a view. (b) Imaging r0 onto subimages behind each microlens.
View aliasing occurs: The frequency in r is higher than the microlens
pitch d, so views contain samples unrelated to their neighbors via
interpolation.

2. We use as a reference the conjugate image, as this has the same
orientation as the image captured by a conventional camera, which is
automatically flipped in software to return it to the same orientation as the
object in space.

3. The ðuuuu; ����Þ pair is similar to the parameterization used in [7], [23],
where LF coordinates are defined on two parallel planes. Here, the
corresponding planes are the microlens plane (uuuu) and the main lens
(implicitly via ����).



The coordinates ðqqqq; kkkkÞ will be used often in the next sections

to parameterize the light field, which is originally captured

with respect to the coordinates ½im; jm�T ¼ qqqq þQkkkk. The

inverse mapping is

ðqqqq; kkkkÞ ¼ mod
im
jm

� �
þQ

2
; Q

� �
�Q

2
;
½im; jm�T

Q
þ 1

2

$ % !
: ð7Þ

4.1.5 Ray Space Representation

In Fig. 8, we show an alternate view of sampling, aliasing,
and blurring effects in the plenoptic camera, via the (2D) ray
space representation of Levin et al. [7]. In our version, we
use the internal camera coordinates: uuuu (spatial) and the
projection of ���� onto the main lens (angular). A point in this
space represents a ray through the corresponding positions
on the main lens and microlens array, while a ray with
constant color corresponds to a particular conjugate point
(e.g., the vertical red rays are points on the microlens array,
conjugate to the main lens plane in focus in space; different
slopes represent other depths, with the same colors as the
planes in Fig. 4). Each gray parallelogram indicates the rays
in the LF that a sensor pixel integrates; their shear angle
corresponds to the conjugate plane the microlenses are
focused on. A column of parallelograms is one subimage,
and a row represents a view. Gaps between parallelograms
are due to pixel fill-factor vertically, and microlens apertures
horizontally. To achieve the highest sampling accuracy
achievable, the gray parallelogram should be aligned along
a ray of constant intensity (so that pixel integration does not
lead to a loss of information). rðuuuuÞ is the slice of the rays
along the x-axis.

5 SUPERRESOLUTION LIMITS AND ANALYSIS OF

MODEL

5.1 Superresolution

So far we have found relations between points in space and
their projections on the sensor, assuming infinitesimal
microlens apertures. However, in general the image of a
point pppp0 on the sensor is a pattern called the system PSF,
whose shape depends on the projection of the finite apertures
onto the sensor. We will see that these blur sizes, as well as
the number of times a point is imaged under different
microlenses, can affect the SR quality.

We would like to superresolve at resolutions close to
that of the original sensor. While we may render the
estimate of r at any resolution, the actual detail that will be
recovered will depend on a combination of factors related
to how ill posed the inversion is, and how good our system
calibration and priors are. Previous SR studies [34], [35],
[36] showed in general that the performance of SR
algorithms decreases as blur size increases; it also
decreases when the ratio of upsampling factor to number
of observations remains constant, but the upsampling
factor increases. While our imaging model is rather
different from those mentioned for regular SR, the same
general principles apply. We also point out some important
design considerations based upon these limitations.

5.1.1 Main Lens Defocus

The cone of rays passing through pppp0 causes a blur on the
microlens array determined by the main lens aperture. This
blur disc determines how many microlenses capture light
from pppp0. With the Lambertian assumption, pppp0 casts the same
light on each microlens, and this results in multiple copies
of pppp0 in the LF (see first and third image in Fig. 4).
Approximating this blur by a Pillbox with radius B � 0 (i.e.,
the unit volume cylinder, hðuuuuÞ ¼ 1

�B2 for kuuuuk2
2 � B2 and 0

otherwise), the main lens blur radius is

B ¼ Dv
0

2

1

z0
� 1

v0

����
����: ð8Þ

To characterize the number of repetitions of the same
pattern in the scene, we must count how many microlenses
fall inside the main lens blur disc. Therefore, in each
direction we have

#repetitions ¼ 2B

d
¼ Dv

0

d

1

z0
� 1

v0

����
����: ð9Þ

This ratio is also evident in the ray space (Fig. 8) by
considering how many columns (subimages) the blue ray
on the right covers. In our SR framework, this number
determines how many subimages can be used to super-
resolve the LF.

5.1.2 Microlens Blur

A necessary condition to superresolve the LF is that the
input views are aliased so that they sample different
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Fig. 8. Ray space diagram [7], with internal camera coordinates.
(a) Apertures on the microlenses correspond to parallelograms. The
yellow region corresponds to objects inside the camera, while the green
line marks the conjugate image at �1, i.e., the object at distance F from
the camera. (b) Microlens blur with finite apertures (vertical scale here is
in � rather than � v0

v �).

Fig. 7. (a) Choice of aperture sizes for fully tiling subimages. (b) Imaging
the purple vector under different microlenses. A point uuuu on the radiance
has a conjugate point indicated by the triangle at uuuu0, which is imaged by a
microlens centered at an arbitrary center cccc, giving a projected point at
angle ����. A second microlens positioned at uuuu images the same point at the
central view ���� ¼ 0 on the line through OO. The scaling of the purple vector
to the green vectors is �.



information, i.e., they are not just shifted and interpolated
versions of the same image. We discuss aliasing further in
Section 6, but here it suffices to note that increasing
subimage blur reduces complementary information in the
LF available to perform SR. The blur of each microlens that
is fully covered by the main lens PSF (some are not, see
Section 7.1.2) is also a pillbox due to the microlens aperture,
with radius (see Fig. 5):

b ¼ dv
2

1

f
� 1

v0 � z0 �
1

v

����
����; ð10Þ

where f is the microlens focal length. In Fig. 8, the
microlens blur is the horizontal projection of a ray onto
the subimage pixels it intersects. Restoration performance is
optimal at depths where b! 0 (rays like the purple one in
Fig. 8, with the same slope as the pixel shear), obtained for
points pppp0 at a distance z0 ¼ v0 � vf

v�f , and it will degrade
away from these depths. When a microlens is not fully
inside the main lens PSF, then its blur radius is smaller (see
Section 7). For simplicity, consider the blur radius b0 when
both microlens and main lens share the same optical axis
(see the general case in Section 7):

b0 ¼ min
2Bb

d
; b

� �
: ð11Þ

Notice that as z0 ! v0, although b!1, the radius b0

converges to Dv
2v0 (see Fig. 2). In Fig. 8b, this case occurs

with the red ray where microlens blur radius b0 is bounded
by the subimage size. In Fig. 9, we show how b varies
according to scene depth, for a few different settings of the
spacing v. It can be seen that this blur behaves roughly in a
complementary way to that of a conventional camera,
attaining a maximum at the depth where the main lens blur
onto the microlens array attains a minimum. In terms of the
ray space, changing v (while keeping the x-axis attached to
the microlens array) corresponds to a vertical shear of each
integration region. With Ng’s et al. [3] setting (microlenses
focused on the main lens), the regions become rectangular.

5.1.3 Magnification

The microlens blur size alone does not tell the whole story.
We must also take into account the magnification factor j�j
which represents the scaling between the regular image that
would form at the microlens plane and the actual image
that forms under each microlens. It is defined as (see Fig. 7)

� ¼: z0

v0
v

v0 � z0 : ð12Þ

Notice the relation to Lumsdaine and Georgiev’s magnifica-
tion factor [21]. Here, however, we refer everything to a
common reference frame in r in order to compare multiple
depths. Note that the number of repetitions may also be
rewritten in terms of � as

#reps ¼ D
d

v0 � z0
z0

����
���� ¼ v0z0 v

0 � z0
v

����
���� v0 þ vv0

¼ 1

j�j
�Q

d
; ð13Þ

where we used (6). Thus, since �Q
d is constant, as the

number of repetitions increases, the size of subimage
features decreases.

The above equation formalizes the constraint that, for
each depth, the amount of information from r remains
constant, but is split across a different number of sub-
images. What does change, however, is the effective blur, or
the integration region in r of a sensor pixel, as it scales with
the magnification factor �.

5.1.4 Coincidence of Samples and Undersampling

In this section, we show that samples from different
microlenses coincide in space on some fronto-parallel
planes. On these planes the aliasing requirements are not
satisfied and the SR restoration performance will decrease.
We shall see this experimentally in Section 8.2.2. One such
plane is when the conjugate image lies on the microlens
plane. Another is shown in Fig. 6, where r0 is positioned
such that the blue, red and black rays intersect inside the
camera at this depth. In Fig. 8, this degeneracy corresponds
to a ray passing through exactly the same point in a
parallelogram in different subimages.

To have an exact replica of a sample of r0 under two
microlenses, it must simultaneously project on two discrete
pixel coordinates. Considering two microlenses separated
by Nd, with N 2 ZZ, then the coordinate ����0 under the first
microlens must correspond to a coordinate Nd�ðuuuuÞ ¼ T ,
where T 2 ZZ. Also, for the corresponding pixel to be fully
inside the subimage, T < �Q

2 . By substituting the expression
for T , we see that such microlenses must satisfy N <
�Q

2d�ðuuuuÞ ¼ 1
2 #repetitions. Moreover, the corresponding depths

are those such that �ðuuuuÞ ¼ T
Nd with N and T integers.

Finally, we can also determine the total number of
genuinely new samples by analyzing the overlap between
different microlenses. When 9 N;T � 1 coprime (if not, we
could always find additional matching samples), then the
total number is

#new pixels ¼ ½NQþ T ðK1 �NÞ�½NQþ T ðK2 �NÞ�: ð14Þ

6 LIGHT FIELD ANTIALIASED DEPTH ESTIMATION

We now consider how the extracted LF views or
subimages can be related to infer depth, and why classical
multiview stereo methods must be adapted to cope with
aliasing of the views.

6.1 View and Subimage Correspondences

We begin by using a simple pinhole approximation of the
system and by generalizing the microlenses to virtual ones
centered in the continuous coordinates cccc, rather than
discrete positions cccckkkk.
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Fig. 9. (a) and (b) Microlens blur radius b versus scene depth z (in log
scale), for several settings of the microlens-to-CCD spacing v. The
microlens focal length f is 0.35 mm (note that Ng et al. [3] sets v ¼ f).
The main lens plane in focus is at 700 mm. Our model can work with any
suitable settings. (c) Magnification factor � between the radiance at the
microlens plane and each subimage, under similar settings.



Let us use Fig. 7b to consider: 1) how a vector or a point
is mapped from the radiance onto the sensor under an
arbitrary microlens at cccc, and 2) where the correspondences
of the point cccc lie in other views if this point is at angle ���� in
one view.

To find 1, begin with the purple vector uuuu� cccc. By similar
triangles and by projecting first through OO to the red vector
and then through cccc to the green one, we see that the purple
vector image under lens cccc is scaled by � (see (12)). Noting
that the local origin is ����0, we can equivalently express the
mapping of the point uuuu in r (the tip of the vector) through a
lens at cccc to a subimage correspondence at

���� ¼ v

v0 � z0ðuuuuÞ
z0ðuuuuÞ
v0
ðcccc� uuuuÞ ð15Þ

¼ �ðuuuuÞðcccc� uuuuÞ: ð16Þ

By inverting this relation, the original point uuuu in r

corresponding to any ���� and cccc is uuuuð����; ccccÞ ¼ cccc� ����
�ðuuuuÞ , and the

views and subimages are related to the radiance as:
V����ðccccÞ ¼ Sccccð����Þ ¼ rðcccc� ����

�ðuuuuÞÞ. V����ðccccÞ and Sccccð����Þ differ only by
which of ���� or cccc we hold fixed.

Considering (2), we can reformulate the above ideas. For
a point cccc1 in a particular view at angle ����1, we can find its
correspondence uuuuð����1; cccc1Þ in the radiance, and then solve for
cccc2 so that V����1

ðcccc1Þ ¼ rðuuuuÞ ¼ V����2
ðcccc2Þ, for arbitrary ����2. The

trick is to refer everything to a common reference frame
where �ðuuuuÞ is defined (the points share the same depth/
magnification). We choose this reference frame to be the
central view ����0 ¼ 00, where we have cccc ¼ uuuu and V0ðccccÞ ¼
V0ðuuuuÞ ¼ rðuuuuÞ, i.e., this view samples the radiance directly.
This can be seen in Fig. 7b as the microlens placed at uuuu.
The result is that cccc1 ¼ uuuuþ ����1

�ðuuuuÞ and cccc2 ¼ uuuuþ ����2

�ðuuuuÞ . The
discrete version of these equations, which we describe
below, leads us to the view matching in (3). We may also
interpret these matches as positions ðcccc1; ����1Þ and ðcccc2; ����2Þ on
the same ray in Fig. 8, where 1

� is the slope of the ray and uuuu

is where the ray intersects the x-axis.

6.2 Discretization of Views and Subimages

V����ðccccÞ and Sccccð����Þ are defined for all possible cccc and ����. In
practice, if we approximate the microlens array with an
array of pinholes,4 only a discrete set of samples in each
view is available, corresponding to the pinholes at positions
cccc ¼ cccckkkk. Furthermore, the pixels in each subimage sample the
possible views at ����qqqq. Therefore, we define the discrete
observed view V̂qqqq at angle ����qqqq as the image

V̂qqqqðkkkkÞ ¼: V����qqqq ðcccckkkkÞ ¼ r cccckkkk �
����qqqq

�ðcccckkkkÞ

� �
¼ r dkkkk� sðcccckkkkÞdqqqqð Þ; ð17Þ

where we defined the view disparity, in pixels per view, as

sðuuuuÞ ¼: �
d

1

�ðuuuuÞ : ð18Þ

The discrete disparity is sðcccckkkkÞ and depends on the depth z.
The discretized subimages are just a rearrangement of the

LF samples; in fact they are also defined by (17), i.e.,
ŜkkkkðqqqqÞ ¼ V̂qqqqðkkkkÞ.

In a similar manner to the continuous case, two discrete
views at qqqq1 and qqqq2 can be related via the reference view as

V̂qqqq1
ðkkkkþ sðcccckkkkÞqqqq1Þ ¼ V̂0ðkkkkÞ ¼ V̂qqqq2

ðkkkkþ sðcccckkkkÞqqqq2Þ; ð19Þ

thus obtaining the matching terms in (3). By defining the
subimage disparity, tðcccckkkkÞ ¼: 1

sðcccckkkkÞ , subimages may also be
related via

Ŝkkkk0þkkkk1
ðqqqq þ tðcccckkkk0

Þkkkk1Þ ¼ Ŝkkkk0
ðqqqqÞ ¼ Ŝkkkk0þkkkk2

ðqqqq þ tðcccckkkk0
Þkkkk2Þ: ð20Þ

The discrete views in (17) are just samples of r with
spacing d, but different shifts sðuuuuÞdqqqq, depending on the
view angle and depth. The multiview disparity estimation
task is to estimate sðuuuuÞ by shifting the views so that they are
best aligned. However, this requires subpixel accuracy, i.e.,
an implicit or explicit reconstruction of r in the continuum.
According to the sampling theorem, r may be reconstructed
exactly from the samples taken at spacing d so long as the
original radiance image contains no frequencies higher than
the Nyquist rate f0 ¼ 1

2d . In practice, this condition is often
not satisfied due to the low resolution of the views, and
aliasing occurs. Observe that a larger microlens pitch leads
to greater aliasing of the views.

6.3 Ideal and Approximate Antialiasing Filtering

Ideally the LF should be antialiased before views are
extracted, i.e., we should combine information across
views. We make use of an extension of the sampling
theorem by Papoulis [37], showing that if r is bandlimited
with a bandwidth fr ¼ Qf0=�, then it can be accurately
reconstructed on a grid with spacing �� if we have Q=�
sets of samples available, with any shifts or linear filtering
of the original signal. This implies that we obtain the
correctly antialiased views ~VqqqqðkkkkÞ from the sampled light
field as follows:

1. Use a reconstruction method Fð�Þ jointly on all
samples to obtain

rðuuuuÞ ¼ FðfV̂qqqq0 ðkkkk0Þg; uuuuÞ ¼
X
kkkk0;qqqq0

�kkkk0;qqqq0 ðuuuuÞV̂qqqq0 ðkkkk0Þ

for some set of interpolating kernels �kkkk0;qqqq0 (we could
use the theorem from [37] to define these kernels,
but essentially this operation corresponds to apply-
ing any (SR) method).

2. Filter these samples with an antialiasing filter hf0
at

the correct Nyquist rate f0 to obtain

~rðuuuuÞ ¼ ðhf0
? rÞðuuuuÞ:

3. Resample to obtain ~VqqqqðkkkkÞ ¼ ~rðcccckkkk þ sðuuuuÞ d� ����qqqqÞ.
A drawback of this approach is that a computationally

demanding (SR), as well as filtering at a high resolution
before extracting low resolution views, is required. More-
over, a chicken-and-egg type problem is apparent: The
depth-dependent filters depend on the unknown depth
map. Thus, we look at an approximate but efficient method.

Rather than filtering the whole LF simultaneously, we
filter each subimage directly, bypassing the reconstruction
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4. We will see that the addition of microlens blur due to finite apertures
will integrate around these sample locations.



step. Since each subimage is a windowed projection of r onto
the sensor (ignoring blur for now), we may equivalently
project the filters in the same way. This is approximate at
subimage boundaries, where we must use filters with a
support limited to the domain of �. Hence, we upper bound
the filter size using a Lanczos windowed version of the ideal
Sinc kernel. The antialiasing filter hf0

, defined in r, is
projected onto the sensor via the conjugate image at z0, i.e.,
scaling by j�j, as in (16). Hence, the scaled filter has physical
cutoff frequency f0j�j. We propose an iterative method,
beginning with a strong antialiasing filter, and refining the
estimate based upon the current depth map. Too much
filtering might remove detail for valid matches, while too
little may leave aliasing behind (see Fig. 10). We summarize
the algorithm as follows:

1. Initialize all filters with cutoff f0j�jmax, i.e., assuming
the depth which yields the most aliasing in the
working volume.

2. Estimate the disparity map sðcccckkkkÞ (see Section 6.5).
3. Rearrange the views as subimages ŜkkkkðqqqqÞ.
4. For each kkkk, filter ŜkkkkðqqqqÞ by hf0j�j, using � ¼ �

dsðcccckkkkÞ .

5. Repeat from 2 until the disparity map update is
negligible.

6.4 Microlens Blur

With finite microlens apertures each pixel integrates over a
larger area and aliasing is reduced due to additional blur
(see Fig. 8). By taking this into account we can use milder
antialiasing.

As the antialiasing filter for an array of pinhole lenses is
a Sinc filter, we define the antialiasing kernel size as this
filter’s first zero crossing, i.e., 1

2f0j�j . The correct amount of
antialiasing is readily obtained by comparing this size with
the blur radius b. Then, the final antialiasing filter has a
radius approximated as j 1

2f0j�j � bj, clipped from below at 0
and from above by d

2 . Fig. 11 shows the resulting filter
sizes for the settings used in Section 8.1.2.

6.5 Regularized Depth Estimation

We now have all the necessary ingredients to work on the
energy introduced in (3). The depth map s is discretized at
cccckkkk as a vector ssss ¼ fsðuuuuÞguuuu2fcccckkkk;8kkkkg. Due to the ill-posedness
of the problem, we introduce regularization, favoring
piecewise constant solutions by using the total variation

term krsðuuuuÞk1, where r is the 2D gradient with respect to
uuuu. Hence, we wish to solve

~ssss ¼ arg min
ssss
EdataðssssÞ þ �krsðuuuuÞk1; ð21Þ

where � > 0 determines the tradeoff between regularization
and data fidelity (in our experiments we chose � ¼ 10�3).
We minimize this energy by using an iterative solution. By
noticing that Edata can be written as a sum of terms
depending on a single entry of ssss at once, we find an
initialization ssss0 by performing a fast brute force search in
Edata for each cccckkkk independently. Then, we approximate
Edata via a second order Taylor expansion, i.e.,

Edataðsssstþ1Þ ’ EdataðsssstÞ þ rEdataðsssstÞðsssstþ1 � sssstÞ

þ 1

2
ðsssstþ1 � sssstÞTHEdataðsssstÞðsssstþ1 � sssstÞ;

ð22Þ

where rEdata and HEdata are the gradient and Hessian of
Edata, and subscripts t and tþ 1 denote iteration number.
To ensure our local approximation is convex we take the
absolute value (component wise) of HEdataðsssstÞ. In the case
of the term krsðuuuuÞk1, we use a first order Taylor expansion
of its gradient. Computing the Euler-Lagrange equations of
the approximate energy E with respect to sssstþ1 this
linearization results in

rEdataðsssstÞ þ jHEdataðsssstÞjðsssstþ1 � sssstÞ � �r �
rðsssstþ1 � sssstÞ
jrsssstj

¼ 0;

ð23Þ

which is a linear system in the unknown sssstþ1, and can be
efficiently solved using conjugate gradients (CG).

7 LIGHT FIELD SUPERRESOLUTION

So far we devised an algorithm to reduce aliasing in views
and estimate the depth map. We now define a computa-
tional PSF model, and formulate the MAP problem
presented in Section 3.

7.1 Light Field Camera Point Spread Function

7.1.1 PSF Definition

Combining the analysis from Sections 4 and 5, we can
determine the system PSF of the plenoptic camera hLIs —
which is unique for each point in 3D space, and will be a
combination of main lens and microlens array blurs. We
define this PSF such that the intensity at a pixel iiii caused by
a unit radiance point at uuuu with a disparity sðuuuuÞ is
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Fig. 10. Antialiasing filtering, increasing from (a) to (d). Top row: Detail of
subimages. Middle: Corresponding filtered full view. Bottom: Magnified
detail of the view.

Fig. 11. Microlens blur and antialiasing filter sizes versus depth.
(a) Overlap of filter kernel size and microlens blur radius for different
disparity (depth) values. (b) Resulting antialiasing kernel size for
different depth values.



hLIs ðiiii; uuuuÞ ¼ hML
kkkkðiiiiÞð����qqqqðiiiiÞ; uuuuÞh

�L
kkkkðiiiiÞð����qqqqðiiiiÞ; uuuuÞ; ð24Þ

where kkkkðiiiiÞ and qqqqðiiiiÞ are given by (7). In a Lambertian scene,
the image l captured by the light field camera is then

lðiiiiÞ ¼
Z
hLIs ðiiii; uuuuÞrðuuuuÞduuuu: ð25Þ

We define the microlens point spread function h�LkkkkðiiiiÞ
considering the main lens diameter to be infinite. This gives

h�LkkkkðiiiiÞð����qqqqðiiiiÞ; uuuuÞ ¼
1

�b2ðuuuuÞ ����qqqqðiiiiÞ � �ðuuuuÞðcccckkkkðiiiiÞ � uuuuÞ
		 		

2
< bðuuuuÞ

0 otherwise:

8<
:

ð26Þ

We define the main lens point spread function hML
kkkkðiiiiÞ

assuming, instead, the microlens diameter is infinite. We
obtain

hML
kkkkðiiiiÞð����qqqqðiiiiÞ; uuuuÞ ¼

d2

4��2
; ����qqqqðiiiiÞ 	 2bðuuuuÞ

d ðcccckkkkðiiiiÞ � uuuuÞ
			 			

2
< 2�

d

0; otherwise;

8<
:

ð27Þ

where �ðuuuuÞ ¼: BðuuuuÞbðuuuuÞ and the sign of the cccckkkkðiiiiÞ � uuuu term
is positive when v > z0f

z0�f and negative otherwise.

7.1.2 Main Lens Vignetting

As seen in Fig. 4 a microlens may only be partially hit by the
main lens blur disc, which results in clipped microlens PSF;
this effect is modeled by the product of h�LkkkkðiiiiÞ and hML

kkkkðiiiiÞ. Also
notice that depending on the camera settings and the
distance of the object from the camera, the PSF under each
microlens may be flipped.

7.1.3 Discretization

To arrive at a computational model, we discretize the
spatial coordinates as uuuun with n 2 f1 . . .Ng and use the
pixel coordinates ½im; jm�T with m 2 f1 . . .Mg. Then, (25)
can be rewritten in matrix-vector form llll ¼ HHHHsrrrr as in (1).
rrrrðnÞ ¼: rðuuuunÞ and llllðmÞ ¼: lðim; jmÞ are the discrete vectorized
versions of l and r. HHHHs 2 IRM�N is the sparse matrix

HHHHsðm;nÞ ¼: hLIsðuuuunÞðiiiim; uuuunÞ; ð28Þ

where each column is the PSF corresponding to the
upsampled depth map at that point (i.e., it is a nonsta-
tionary operator). Also, we are free to choose the spacing of
the samples uuuun as ��; setting � ¼ 1 recovers the same
resolution as the original sensor; however, depending on
the camera settings, too high a resolution will not reveal
additional detail. Hence, we choose � based on our analysis
of the limits of the LF camera as described in the previous
sections. Note that, in particular, if the microlens diameter
is reduced, more image detail will be visible (although less
light efficient). Typically, we use � ¼ 2 to reduce computa-
tional load. The upsampling factor compared to the original
views is Q=�.

7.2 Bayesian Superresolution

We use the Bayesian framework to estimate rrrr, where all
unknowns are treated as stochastic quantities. With
additive Gaussian observation noise wwww 
 Nð0; 	2

wIIÞ, the

model becomes llll ¼ HHHHsrrrrþ wwww, and the probability of
observing a given light field llll in (1) may be written as
pðllll rrrr;HHHHs; 	

2
w; s

�� Þ ¼ N ðllll HHHHs; rrrr; 	
2
wII

�� Þ.
We then introduce priors on the unknowns (assuming ssss

is already estimated). Many recent image restoration works
make use of nonstationary edge preserving priors. For
example, total variation or modeling heavy-tailed distribu-
tions of image gradients or wavelet subbands are popular
[38]. We apply a recently developed Markov random field
(MRF) prior [31], [32] which extends such ideas to
modeling higher order neighborhoods. It uses a local
autoregressive (AR) model, whose parameters are also
inferred, and leads to a conditionally Gaussian prior
pðrrrrj aaaa; 				v:Þ ¼ N ðrrrrj 0;C�1QQQQvC

�T :Þ, where matrix CCCC applies
locally adaptive regularization using AR parameters aaaa; QQQQv

is a diagonal matrix of local variances 				v. We estimate these
parameters using conjugate priors, which lets us set
confidences on their likely values. The resulting Gaussia-
n—inverse-gamma combination also represents inference
with a heavy-tailed Student-t, considering the marginal
distribution, corresponding to sparsity in the texture model.

The SR inference procedure therefore involves finding an
estimate of the parameters rrrr; aaaa; 				v; 	

2
w given the observations llll

and an estimate of HHHHs. Direct maximization of the posterior
pðrrrr; aaaa; 				v; 	w llll; HHHHsj Þ / pðllll HHHHsj Þpðrrrr aaaa; 				vj Þpðaaaa; 				v; 	2

wÞ i s i n -
tractable; hence, we use variational Bayes estimation with
the mean field approximation to obtain an estimate of the
parameters.

7.3 Numerical Implementation

The variational Bayesian procedure requires alternate
updating of approximate distributions of each of the
unknown variables. The approximate distribution for rrrr is
a Gaussian with

IE½rrrr� ¼ cov½rrrr�	�2
w HHHHT

s llll; ð29Þ

cov½rrrr��1 ¼ CTQQQQ�1
v Cþ 	�2

w HHHHT
s HHHHs: ð30Þ

This update of IE½rrrr� can be found solving MMMMTMMMMrrrr ¼MMMMTyyyy,
with QQQQ�1

v ¼ LLLLTLLLL, MMMM ¼ ½	�1
w HHHHT

s jCTLLLL�T , and yyyy ¼ ½	�1
w llllT j0�T .

However, due to the large size of this linear system, we solve
efficiently using CG for each step. Each CG iteration requires
multiplying by HHHHs and its transpose once, which we
implement as a sparse matrix formed using a look-up table
of precomputed PSFs from each point in 3D space. The
image restoration procedure is run in parallel tasks across
restored tiles of size up to around 400� 400 pixels, which
are trimmed to the valid region and then seamlessly
mosaiced (size is limited such that the nonstationary HHHHs

can be preloaded into memory). We run experiments in
MATLAB on an 8-core Intel Xeon processor with 2 GB of
memory per task. Precalculating the look-up table can take
up to 10 minutes per depth plane (depending on PSF size);
however, restoration is faster: Each CG iteration takes
around 0.1-0.5 seconds (again depending on depth). Good
convergence is achieved after typically 100 to 150 iterations.
The AR model parameters are recomputed every few CG
iterations, taking around 1-2 seconds. Notice that since the
model is linear in the unknown rrrr, convergence is guaranteed
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by the convexity of the cost functional. The total runtime per
tile is typically 30-60 seconds, depending on depth.

8 EXPERIMENTS

The antialiased 3D depth estimation method is tested on both
synthetic and real data in Section 8.1. Then, the proposed SR
method is tested similarly in Section 8.2. We also evaluate
restoration performance in Section 8.2.2, comparing to other
computational and regular camera systems.

8.1 Antialiased Depth Estimation

8.1.1 Synthetic Data

The scene in Fig. 12 consists of five steps at different depths,
with a texture that is the sum of sinusoids at 0.2 and 1.2 times
the views’ Nyquist rate f0, therefore the higher frequency is
aliased in the views (but not in the subimages). The scene has
disparities in the range s ¼ 0:24 to 0.44 pixels per view. We
simulate a camera with Q ¼ 15, � ¼ 9:05� 10�6 m, d ¼
0:135 mm, v ¼ 0:5 mm, f ¼ 0:5 mm, v0 ¼ 91:5 mm, a n d
F ¼ 80 mm. Note that for these settings, the microlens blur
is small but nonnegligible, varying between 1.2 and 2.1 pixels
radius. We use the 9� 9 pixel central region of each subimage
for depth estimation. Fig. 12 shows one of the 81 extracted
views, and the result of filtering with the estimated and true
disparity maps, with the aliased component separated out. In
Fig. 13, we compare the resulting disparity maps recovered
with no antialiasing filtering, the iterative method, with the
correct antialiasing filter (the errors at depth transitions occur
due to lack of occlusion modeling in the synthesized data),
and the ground truth.

We also test the algorithm’s performance, repeating the
experiment at 16 depths (for s ¼ 0:1 to 0.6). Results in Table 1
show the average L2 norm per pixel of the error between the

ground truth and the disparity maps obtained with different
filtering. We use the sinusoidal pattern and three textures
taken from the Brodatz data set (http://sipi.usc.edu/
database/database.cgi?volume=textures). Each texture is
resized to 380� 380 pixels, and tested again with the central
50 percent enlarged to this size to give a coarser scale. We
test both the noise-free case and with additive Gaussian
observation noise at two different levels. The textures
contain different proportions of high and low frequencies;
when more high frequencies are removed due to aliasing,
matching performance decreases as less texture content
remains to match.

8.1.2 Real Data

The use of small f=10 microlens apertures and a large
microlens spacing (27 pixels per subimage) results in
significant aliasing in the data from Georgiev and
Lumsdaine [22] (kindly made available by Georgiev at
http://www.tgeorgiev.net), hence it is a good test for the
antialiasing algorithm. Other camera settings are as
described in [6], [22]. Subimages and view details of this
data are shown in Fig. 10, for different filters, to
appreciate the effect of an incorrect size. In Fig. 14, we
show the disparity maps obtained at different steps of the
iterative algorithm (the first iteration is essentially a
standard multiview stereo result), along with the final
regularised result. Notice that there is a progressive
reduction in the number of artifacts and that the disparity
map becomes more and more accurate. The estimated
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Fig. 12. Synthetic data: antialiasing filtering. Top: LF image of a sum-of-
two-sinusoids texture (at five depth planes). Bottom: (a) One extracted
view, containing aliasing. (b) The view filtered with the estimated depth
(left) and the corresponding high-frequency image (right). (c) As in (b),
but using the true depth; there is little difference between the two.
(d)-(f) Enlarged portions of the last depth step in (a)-(c).

Fig. 13. Depth estimates. From top to bottom: Results obtained without
filtering, with the iterative method, with the correct filtering, and the
ground truth. Each row shows the disparity map (a) without and (b) with
regularization. Notice how the results obtained with the estimated depth
are extremely similar to those obtained with the correct filter.

TABLE 1
Average L2 Norm Disparity Error (Pixels per View �10�3),
against Noise Levels, Filtering Method: No (A), Ideal (B),

and Iterative Filtering (C), 4 textures and at 2 scales:
Fine (1), Coarse (2)

Row header is in the format (Texture/Scale).

Fig. 14. Depth estimates on real data. (a) Disparity map estimate
obtained without regularization (left) and for increasing filtering iterations
(middle and right). (b) L1 regularized disparity map, from the energy of
the third iteration. (c) Regularized depth map for the puppets data set
(Fig. 18).



disparities lie in the range s ¼ �0:34 to 0.31, with the
middle book being around the main lens plane-in-focus
(zero disparity). Regularized depth maps from other real
data sets are also shown in Figs. 14 and 1.

8.2 Superresolution Results

8.2.1 Synthetic Data

In Fig. 15, we simulate LF camera data using (1) and a
synthetic depth map, then apply the SR algorithm (using
the known depth) to recover a high resolution focussed
image. The simulated scene lies in the range 800-1,000 mm,
each of the 49 views (i.e., we use only the 7� 7 pixel
central portion of each subimage in this experiment) is a
19� 29 pixel image. The magnification gain is about seven
times along each axis.

8.2.2 LF Camera/SR Performance Testing

First, we test how the proposed SR method compares to
low-resolution integral refocusing [3] and the method of
Lumsdaine and Georgiev [6]. We generate synthetic LF data
using our model and the same settings as Section 8.1.1, with
the “Bark” texture from the Brodatz database positioned on
a sequence of 110 planes with depths in the range 486-1,074
mm. We omit planes near the main lens plane-in-focus
where � < 1, i.e., where space is undersampled and
reconstruction better than the resolution in [3] is not
possible at all points.5 For each depth, and for a range of
different additive noise levels 	w, we restore the texture
using our SR method using � ¼ 1 and an L2 smoothness
prior (i.e., fixing the matrix CCCC as the discrete Laplacian), and
also the method of Lumsdaine and Georgiev [6]. In the first
plot of Fig. 16, we show the improvement in signal-to-noise
ratio (ISNR) of these results, defined by 10 logðrrrr�rrrr0

rrrr�r̂rrr Þ, where rrrr
is the true texture, rrrr0 an initial estimate given by the method
in [3]. We see that our method performs well across depths,
with a maximum when the magnification is close to 1, as
predicted by our analysis, and ISNR decreasing for strong
noise (20 dB) to a similar level as the method of Lumsdaine
and Georgiev [6], which is resistant to noise due to
averaging. Also observe there are certain depths where
the performance of SR in the LF camera drops as predicted
due to coinciding samples at rational disparity values (see
Section 5.1.4).

In the second experiment, we compare the simulated
performance of DoF extension using the LF camera with
both a traditional camera and a coded aperture camera
system (for these systems we deconvolve images away
from the plane-in-focus). Each camera has the same
number of sensor pixels, Nsensor ¼ K1K2Q

2, as the LF
camera (the original image rrrr has more pixels, even for
� ¼ 1, to properly simulate boundary conditions in real
devices). We used our SR algorithm with the L2 smooth-
ness prior to restore the images from the simulated LF
camera, and deconvolution with the same prior and the
known aperture PSF to restore the images in the other two
cases. Noise variances are estimated automatically from
the images. We normalize the main lens’ open aperture
area in each case so that the same amount of light reaches
the sensor. For the coded aperture system, we used the
	 ¼ 0:005 optimized mask from Zhou and Nayar [39],
although the mask from Veeraraghavan et al. [4] gave very
similar results.

The second plot in Fig. 16 shows the L2 norm of the
error per pixel, 1

Nsensor
krrrr� r̂rrrk, for each system. Coded

aperture (dashed lines) has a benefit over a regular camera
(thin lines), mostly for lower noise levels, around the main
lens plane in focus, and an LF camera (thick lines)
outperforms both for depths away from this plane (again
for depths where � < 1 we cannot restore the image at all
points). The horizontal dotted lines are the error from
down- and re-upsampling the original rrrr via bicubic
interpolation, by the indicated factors (2�-32�). In the
third experiment in Fig. 17, we quantify the image
resolution with regards to coded aperture and focal sweep
[13], via restoration of a simulated resolution chart at
various depths. In coded aperture the aim is to obtain a
high resolution depth map and image. Here, we only
compare the image reconstruction when depth is known.
Also, notice that in the focal sweep method the depth
estimation step is not needed. Not only do we see an
improvement over the method of Lumsdaine and Georgiev
[6], but also that deblurring this result is not equivalent to
restoration with the full model and that the LF camera
reproduces detail such as the digits much more faithfully
than the other methods. The top row in Fig. 17 shows that
the reconstruction with the LF camera is less degraded
than in other extended DoF systems. In coded aperture,
texture content is lost away from the focal plane due to
blur, and in focal sweep depth invariance of the PSF does
not hold well for planes at the end of the sweep range.
Also note that in Fig. 17d, the reconstruction improves for
� approaching 1 (i.e., at depth level 88, last row). Finally
note that these results are for a circular main lens aperture;
with a square aperture there are 4

� more pixels available,
which will improve results further for the LF camera.

8.2.3 Real Data

We perform SR on data from both our camera prototype
(Figs. 1 and 18) and from Georgiev and Lumsdaine [22]
(Fig. 18). To capture our data, we built a portable LF camera
similar to that in [3], using a Hasselblad H2 medium format
camera with an 80 mm f/2.8 lens, and a Megavision E4
digital back. The 16 MP color CCD has 4;096� 4;096 pixels,
size � ¼ 9 �m. A custom-made adapter positions the

BISHOP AND FAVARO: THE LIGHT FIELD CAMERA: EXTENDED DEPTH OF FIELD, ALIASING, AND SUPERRESOLUTION 983

Fig. 15. Synthetic results. (a) Top: True radiance. (b) Top: True depth
map. (c) Top: Light field image simulated with our model. (a) Bottom: LF
image rearranged as views. (b) Bottom: Central view (as in a traditional
rendering [3]). (c) Bottom: (SR) radiance restored with our method.

5. A general limitation of LF cameras, and not our method. It can be
solved by picking camera parameters to keep this region outside the
working volume.



microlenses near the sensor. The array has about 250� 250
circular lensets, with f � 0:35 mm, v � 0:4 mm, and dia-
meter d ¼ 135 �m, giving about 15� 15 pixels per sub-
image.6 Our microlenses have an f/4 aperture, though in
Fig. 1 we used just the central 7� 7 pixel subimages, as our

initial array lacked a chromium mask in the gaps, the

absence of which meant light leakage in the outer views

made them unusable for SR. In the left of Fig. 18, we used a

new set of microlenses with this mask, and we use the

central 69 views within a 9 pixel diameter circle.
Both mechanical and software calibration of the system is

essential. Our microlens adapter has external screws,
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Fig. 17. Resolution tests. The experiment in Fig. 16 is repeated with the same camera settings using a resolution test chart and noise at

	 ¼ 1:2� 10�2. Column (a) Simulated Light Field image; (b) method of [6] (used as initialization); (c) method of [6] deblurred (only for comparison);

(d) input image restored with our method; (e) Simulated Coded Aperture image; (f) deconvolved CA image; (g) Simulated focal sweep image (across

the whole depth range); (h) deconvolved focal sweep image, using middepth PSF. Rows, top to bottom: depth ¼ 60; 72; 80; 88. The plenoptic camera

is seen to outperform the CA and focal sweep systems in terms of regularity and clarity of the solution away from the main-lens plane in focus when

depth is known. Also, more detail is recovered via the full observation model than by deblurring the results in the second column.

Fig. 16. L2 error results comparison. (a) Restoration performance versus depth of our method and the method of [6] on the simulated LF camera
using our camera settings and the Brodatz “Bark” texture, with input intensity range 0-1. The (ISNR) is compared for several different levels of
observation noise (standard deviation 	w ). Solid lines show our restoration method, dashed using the method of Lumsdaine and Georgiev [6] on the
same data. We have not restored depths where � < 1 (there are gaps in the restoration at these parts since some parts of these planes are not
sampled at all). (b) Performance comparison of DoF extension between the LF camera (thick lines), a regular camera (thin lines), and a coded
aperture camera (dotted lines). The crosses indicate the error from the upsampled integral refocusing result on the same LF data. See main text in
Section 8.2.2 for further description.

6. We scale down the recorded images by v0þv
v0 to give exactly Q ¼ 15, and

set � in the model to v0þv
v0 times larger than its true value to match.



enabling full 3D repositioning and rotation without remov-
ing the back. After manual correction, any residual error in
the captured images is removed by automatic homography-
based rectification (consistent to 1

20 pixel across the sensor),
and photometric calibration.

After calibration, we estimate the depth map (see Fig. 14),
and use its upsampled version to construct HHHHs. We compare
with the restoration produced by the method in [6],
modified to scale the subimages locally depending on the
depth map. Clearly, we obtain sharper results with our data,
due to deconvolution (although there are a few errors
particularly around depth transitions, that may be due to
depth map errors and lack of occlusion modeling). With the
data in [22], there is less improvement from deconvolution
since the microlens apertures (which sacrifice light and,
hence, SNR) reduce the blur size, but the use of an
integrated restoration model also suppresses artifacts, for
example, the lines at the bottom of the image and in the
background. The results in Fig. 18 consist of 6� 5 tiles of
125� 125 pixels in the left column and 16� 19 tiles of 135�
135 pixels in the right column.

We reiterate that our methods are general enough to
work with any camera settings, though certain settings may
suit better certain tasks. One important tradeoff is in the
choice of the microlens aperture as done in [22]. Small
microlens apertures require more light, but also allow the
recoverery of an all-focused image at about the detectors
resolution. On the other hand, large microlens apertures are

more light efficient, but result in an effective recovered

image with lower resolution.

9 CONCLUSIONS

We have presented a formal methodology for the restora-

tion of high-resolution images from light field data

captured from a LF camera, which is normally limited to

returning images at the lower resolution of the number of

microlenses in the camera. In our methodology, the 3D

depth of the scene is first recovered by matching

antialiased light field views, and then deconvolution is

performed. This procedure makes the LF camera more

useful for traditional photography applications; we have

also shown the performance benefit of the LF camera for

extended depth of field over other camera designs. In the

future, we hope to use simultaneous depth estimation and

superresolution, as well as extending the model to non-

Lambertian and occluded scenes.

ACKNOWLEDGEMENTS

The authors wish to thank Mohammad Taghizadeh and the

diffractive optics group at Heriot-Watt University for

providing them with the microlens arrays and for stimulat-

ing discussions, and Mark Stewart for designing and

building their microlens array interface. This work has

been supported by EPSRC grant EP/F023073/1(P).

BISHOP AND FAVARO: THE LIGHT FIELD CAMERA: EXTENDED DEPTH OF FIELD, ALIASING, AND SUPERRESOLUTION 985

Fig. 18. Superresolution on real data Top row: Data from Georgiev and Lumsdaine [22] (� ¼ 1:4); Bottom row: “puppets” data set (� ¼ 3). (a) Nearest-
neighbour interpolation of one view. (b) High-resolution view using method of Lumsdaine and Georgiev [6]. (c) View superresolved with our method.
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