
Plenoptic Depth Estimation From Multiple Aliased Views

Tom E. Bishop Paolo Favaro
Department of Engineering and Physical Sciences

Heriot-Watt University, Edinburgh, UK
{t.e.bishop,p.favaro}@hw.ac.uk

Abstract

With a sampled light field acquired from a plenoptic
camera, several low-resolution views of the scene are avail-
able from which to infer depth. Unlike traditional multi-
view stereo, these views may be highly aliased due to the
sparse sampling lattice in space, which can lead to re-
construction errors. We first analyse the conditions under
which aliasing is a problem, and discuss the trade-offs for
different parameter choices in plenoptic cameras. We then
propose a method to compensate for the aliasing, whilst fus-
ing the information from the multiple views to correctly re-
cover depth maps. We show results on synthetic and real
data, demonstrating the effectiveness of our method.

1. Introduction

A plenoptic, or light field, camera allows multiple views

of a scene to be captured in a single snapshot, in a single

compact device [8]. Such cameras sample the light field

providing angular as well as spatial information on the dis-

tribution of light rays in space. They have recently found

application in areas such as 3D reconstruction and digital

refocusing. In this paper we are interested in investigating

how the 3D surfaces of objects in the scene can be recon-

structed with a plenoptic camera.

So far the reconstruction of 3D objects has been ad-

dressed in stereoscopic systems and, more in general, cam-

era arrays. Although planar camera arrays and plenoptic

cameras share a similar design, they have different sam-

pling patterns, which then lead to different tradeoffs in an-

gular and spatial aliasing. As pointed out by Adelson &

Wang [1], plenopic cameras tend to avoid the aliasing of

angular samples that is experienced with a camera array, by

obtaining a continuum of viewpoints. However, [1] did not

consider that spatial aliasing is instead very much present

in plenoptic cameras (see for example Fig. 1).1 Thus tradi-

1Note the well known trade off between angular and spatial informa-

tion: In fact it is only because the views are aliased that superresolved

Figure 1. Example of aliasing in plenoptic views. Left: One view

extracted from a plenoptic image (courtesy of [6]) with one en-

larged region shown at the bottom. Right: Another view extracted

from the same data set (along the horizontal axis). Notice the ap-

parent aliasing affecting these views. Establishing correspondence

for depth inference in these views is therefore prone to errors.

tional multi-view stereo methods that do not take these fac-

tors into account may generate false matches and incorrect

depth estimates.

At first sight, the removal of aliasing in views of the

plenoptic camera does not seem to be a very challenging

problem. Based on Shannon’s sampling theorem, one sim-

ply needs to filter the signal so that its bandwidth is within

Nyquist cutoff frequency. In practice, however, this poses

two main challenges: first, antialiasing filtering needs to be

applied before constructing the views, and second, aliasing

in plenoptic cameras varies with the depth of the scene. In

particular, the second challenge is a chicken-and-egg prob-

lem, as to obtain depth we need to apply an antialiasing fil-

ter, and to build the antialiasing filter we need to know the

depth. We propose an iterative procedure to solve both of

refocused images may be obtained [6, 2]; these methods rely on the fact

that each view contains different information. This however makes align-

ment of the views challenging.
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these challenges, where one starts with the antialiasing fil-

ter corresponding to the smallest admissible bandwidth and

then updates it as depth is estimated.

1.1. Related work

Aliasing in systems similar or equivalent to the plenop-

tic camera has been analyzed before. In particular, other

researchers have studied how the sampling pattern changes

depending on the camera geometry. In [4], the choice of

sensor-to-microlens spacing in a plenoptic camera is con-

sidered. The magnification for different image planes in-

side the camera is then investigated, along with the depth of

focus (although the actual depth of field in the scene is not

explicitly computed). In [5], aliasing of light fields sam-

pled from camera arrays is examined; it is suggested that

using sufficiently large apertures (equal to spacing between

cameras) and pixels with full fill-factor provide the required

pre-aliasing, so long as only one part of the scene needs

to be in focus. In [10] reconstruction methods for dealing

with such aliasing when these conditions are not met are

described. The work in [3] appears to be the most closely

related to ours. The authors study the requirements for sam-

pling rates to avoid aliased light field rendering. Indeed

they observe, as we do, that correct antialiasing depends

on depth in the scene. We note again however that the dif-

ferent sampling arrangement of a plenoptic camera leads to

different requirements. Finally, Ng [7] discusses postalias-
ing artifacts, introduced in approximate reconstruction of a

refocused light field.

Our contributions. To the best of our knowledge, none

of the above prior work covered the following two contri-

butions: 1) Novel analysis of aliasing in views captured by

a plenoptic camera (that also takes into account the non-

negligible blur generated by the microlenses); 2) A method

to reduce aliasing in views via space-varying filtering of the

captured light field, and an iterative procedure for depth es-

timation, that is better or equal than no filtering by construc-

tion.

2. Plenoptic Depth Estimation

As mentioned in the introduction, we intend to develop

an algorithm to reconstruct a 3D map from a single light

field snapshot obtained from a plenoptic camera. In our

approach we consider extracting views (images) from the

light field, so that our input data is suitable for a multiview

geometry algorithm. The multiview depth estimation prob-

lem can then be formulated as the inference of a disparity

map s(u) by finding correspondences between the views

for each pixel u ∈ R
2 visible in the scene. Let Vū denote

the view from location ū ∈ R
2 on the main lens and Vū(u)

the color measured at a pixel u of that view. Then, as we

will see in the next sections, depth estimation can be posed

as the minimization of the following joint matching error

between all combinations of pairs of views2

Edata(s) =
∑
∀ū,û,u

Φ
(
Vū(u− s(u)Δū)− Vû(u− s(u)Δû)

)

(1)

where Φ is some robust norm, and Δū ∈ R
2 is the 2D

offset between each view and the central view (the exact

definition is given in the next sections). In practice, to save

computational effort, we may choose to use only a subset

of views ū in eq. (1) rather than all combinations. Notice

that the above definition of the 2D offset implicitly fixes the

central view as the reference frame for the disparity map s.

As the views may be aliased, minimising this error is li-

able to cause incorrect depth estimates around areas of high

spatial frequency in the scene. Put in simple terms, even

when objects in the scene are Lambertian, the views might

not satisfy sufficiently well the photoconsistency criterion

so that, even in the presence of no noise, Edata may not have

a minimum at the true depth map. Moreover, a common

procedure to achieve subpixel accuracy is to use interpola-

tion to extend the functions to a continuous representation.

This might be a reasonable approximation when the views

collect samples of a band-limited (i.e., sufficiently smooth)

texture. As we have shown in Fig. 1, however, this is not

the case with plenoptic cameras. Therefore, we have to ex-

plicitly define how samples are interpolated and study how

this affects the matching term between views.

Remark 1 Notice that, for the purpose of view matching,
aliasing does not always constitute a problem. To illustrate
this consider the plane in space that is brought in focus onto
the microlens array by the main lens. At these spatial loca-
tions all views capture light rays exactly from the same sam-
pling grid in space, just along different directions. Hence,
if objects are Lambertian, the photoconsistency criterion is
always satisfied and matching can be correctly attained (in
this trivial case there is no shift). Microlenses that satisfy
this property yield a sub-image in the light field with uni-
form intensity.

In section 3 we carry out the analysis of the plenoptic

camera by investigating aliasing from a purely geometric

optics point of view. We start by recalling basic notions and

definitions of quantities related to optics of the camera and

then in section 3.2 we introduce two dual quantities that

are used throughout the paper: the view-based light field

and the subimage-based light field. These quantities are in-

strumental to arrive at a first definition of view aliasing in

2Notice that due to the ill-posedness of the reconstruction problem, a

regularization term needs to be added. While we do so in our implementa-

tion, for the sake of clarity we focus only on the data term in this analysis.
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Figure 2. Schematic of a 2D section of a light field camera. The

plenoptic camera consists of a main lens, a microlens array, and

a sensor. The light emitted by a point in space p is deflected by

the main lens and then split into several beams by the microlens

array. The size of some microlenses has been exaggerated only for

visualization purposes.

Table 1. Light field camera symbols and their description.

Camera parameters
D Main lens diameter

d Microlens diameter & spacing

F Main lens focal length

f Microlens focal length

cz Microlens to main lens length

v′ Microlenses to CCD sensor distance

μ Size of a CCD sensor element

Scene parameters
p 3D point in space

p′ Focused (conjugate) image of p inside the camera

p′′ Projection of p onto the CCD sensor

section 3.4. In section 4 we define the ideal filtering proce-

dure that also includes a high-resolution image reconstruc-

tion step. In section 5 we introduce a more practical solution

based on filtering the subimage-based light field and an it-

erative algorithm. Finally, in section 6 we take into account

microlens blur and present the final filtering algorithm.

3. Light Field Aliasing

The plenoptic camera consists of a main lens, as in a

standard camera, and an array of microlenses positioned

close to the sensor (see Fig. 2, where, for clarity, we show

a 2D cross section with a 1D sensor, as the geometry can

be readily extended to 3D with 2D images). We use the

thin lens model and the geometric optics approximation to

describe the system. For ease of reference, we collect the

parameters used to describe the model in Table 1. Notice

that we assume a general version of the camera in which the

spacing of the microlenses from the sensor v′ may be dif-

ferent from their focal length f . While Bishop et al. [2] de-

rived a characterization of the depth- and spatially-varying

point-spread function (PSF) model for superresolution, here

we describe how the model applies to depth estimation.

We begin by analyzing aliasing in a plenoptic camera

where the microlenses have been replaced by pinholes and

the pixels have negligible size (but spacing μ). We do so

because scaling and projection are not affected by this as-

sumption (to be removed later on), and the notation is easier

to follow.

3.1. Definitions and Notation

In this section we formalize the notation in the image

generation process. The reader mostly interested in under-

standing the general gist of the analysis can skip this sec-

tion. In the following we heavily refer to the scheme in

Fig. 3. We perform the analysis using projections entirely

inside the camera. The whole scene is mapped to the vol-

ume behind the main lens, such that each scene plane at a

depth z is focused to a sharp conjugate image plane at depth

z′ = zF
z−F (given by the thin lens law) from the lens. We

can then treat these conjugate images as the objects to be

imaged by the pinhole or microlens array. Notice that in

general the scene may not be a plane, so that the depth z
varies spatially. We use the coordinates u = [u, v]T on the

microlens plane to define the depth z, so that, in general

we have z(u) and z′(u). The microlens array is located at

cz and consists of K1 × K2 microlenses. We then index

the microlenses with k = [k1, k2]T , k1 = 1 · · ·K1, k2 =
1 · · ·K2; their centers are located at u = ck, with spac-

ing d, i.e., ck = dk. The angular coordinates ū = [ū, v̄]T

are located on the main lens aperture. Their discretised ver-

sion q = [q1, q2]T , with q1, q2 = 1 · · ·Q, is instead located

on the sensor3 and indexes the pixel centers under each mi-

crolens, such that we extract a total of Q2 views from the

captured light field (note that only those lying inside the

projection of the main lens aperture onto the sensor contain

a useful image). The reprojection of each coordinate q on

the sensor onto the main lens is at ū = θq , with spacing
cz

v′ μ, i.e., θq = cz

v′ μq.

3.2. View-Based Vs. Subimage-based Sampling

In order to understand how views are affected by alias-

ing, we need to study how the plenoptic camera samples

the light field. We do so by using the view-based and the

subimage-based light field representations.

In the plenoptic camera, each microlens forms its own

subimage Su(ū) on the sensor, and pixels in each subimage

3In the case that the apertures are chosen such that the subimages fully

tile the sensor without overlap, each subimage is d′′ = v′
cz+v′ d in size

and hence Q = d′′
μ

.
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Figure 3. Coordinates and sampling in the light field camera.

Top: In the main lens pinhole array model, we begin with an image

r at cz , and scale it down to r′ at z′, with O the optical center

of the main lens. Bottom: This conjugate image is then imaged

behind each microlens; for instance the blue rays show the samples

obtained in the subimage under the central microlens. The central

view is formed from the sensor pixels hit by the solid bold rays.

Aliasing of the views is present: the spatial frequency in r is higher

than the microlens pitch d, and clearly the adjacent view contains

samples unrelated to the central view via interpolation.

look through different portions of the main lens (see Fig. 9

for examples of subimages). Thus, the image formed by

collecting the pixels under each microlens that look through

the same portion of the main lens (at an angle given by ū)

form a view, which we denote Vū(u). The views and the

subimages are two equivalent representations of the same

quantity, the sampled light field. Establishing the rela-

tionship between different views or different subimages re-

quires using an explicit light field representation. Because

we assume that the scene is made of Lambertian objects,

we can represent the continuous light field with a function

r(u) that does not depend on the viewing angle. In our

model, r(u) is called radiance image or scene texture, and

it relates to the light field via a reprojection in space of 2D

coordinates on the microlens plane through the centre of the

main lens. That is, r(u) is the high resolution all-focused

image that would be captured by a standard pinhole camera

with the sensor placed at the microlens plane. This pro-

vides a common reference frame, independent of depth. We

also define the depth map on this plane. With reference to

Fig. 3, we then represent the plenoptic image formation pro-

cess as a mapping between r(u) and each view or microlens

subimage, via the conjugate images at z′, which we denote

r′. Notice that each pixel is scaled to a different conjugate

image depending on the depth map at that position.

A conjugate image r′(u) located at z′ can be written as

a function of r(u) by projecting u through O, and then

by scaling down by z′
cz

, i.e., r′(u) = r
(

cz

z′ u
)

(see Fig. 3).

We can now define a continuum of views as a sampling of

the conjugate image, at points that intersect the rays exiting

from ū and passing through each position u on the array

(see Fig. 3). These rays intersect the plane at z′ at positions

ū + z′
cz

(u− ū), such that a view is defined as

Vū(u) = r′
(

ū +
z′

cz
(u− ū)

)

= r

(
cz

z′

(
ū +

z′

cz
(u− ū)

))

= r

(
u + s(u)

v′

dcz
ū

)
(2)

where we defined s(u) = dcz

v′
cz−z′(u)

z′(u) . Using the same co-

ordinates, the continuous subimages are defined in exactly

the same way, except we now fix u for a particular subim-

age, and consider the rays from all the different angles ū

Su(ū) = r

(
u + s(u)

v′

dcz
ū

)
. (3)

3.3. Discretisation of Views and Subimages

Vū(u) and Su(ū) are defined for all possible u and ū.

In practice, if we approximate the microlens array with an

array of pinholes, only a discrete set of samples in each view

is available, corresponding to the pinholes at positions u =
ck. Furthermore, the pixels in each subimage sample the

possible views at ū = θq . Therefore, we define the discrete
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observed view V̂q at angle θq as the image given by the

samples for each k

V̂q(k) .= r

(
ck +

cz − z′

z′
cz

v′
μq

)

= r (ck + s(ck)dμq) . (4)

Here s(ck) is the disparity at the discrete locations ck and

it depends on the depth z; we also use s̄(ck) = s(ck)μ,

the view disparity in pixels. The corresponding discretized

subimages are just a rearrangement of the pixels in the

views; in fact they are also defined by eq. (4), i.e., we have

that Ŝk(q) = V̂q(k).
It is now simple to see that two views are related as

V̂q+Δq
(k) = r

(
ck + s̄(ck)d(q + Δq)

)
= V̂q(k + s̄(ck)Δq), (5)

and, conversely, two subimages are related as

Ŝk+Δk
(q) = r (ck + dΔk + s̄(ck)dq)

= r (ck + s̄(ck)d (q + t̄(u)Δk))

= Ŝk(q + t̄(ck)Δk) (6)

where t̄(ck) .= 1
s̄(ck) . Then, it is immediate to conclude that

Δū = ū v′
dcz

and arrive at the matching terms in eq. (1).

3.4. Matching Views and Aliasing

From eq. (4), it is apparent that the discrete views are

just the samples of r with spacing d, but with a differ-

ent shift s̄(u)dq, that depends on the view angle and the

depth. The multi-view disparity estimation task is to esti-

mate s̄(u) by shifting the available views so as to achieve

the best alignment. Such alignment, however, requires sub-

pixel accuracy, so that an implicit or explicit reconstruction

of r in the continuum is needed. However, according to the

sampling theorem, r may be reconstructed exactly from the

samples taken at spacing d, so long as the original radiance

image contains no frequencies higher than the Nyquist rate

f0 = 1
2d . In practice this condition is often not satisfied due

to the low resolution of the views, and aliasing occurs. Ob-

serve that a larger microlens pitch leads to a higher aliasing

of the views.

4. Light Field Antialiasing
In order to eliminate aliasing from the views, it is nec-

essary to filter the light field before views are extracted.

Therefore, we consider how we can make use of informa-

tion across the views to help impose the correct antialiasing

operation.

Our method is based on an extension of the sampling

theorem by Papoulis [9], that shows that if r is bandlimitted

with no frequency content above a cutoff frequency fr =
Qf0, then we can accurately reconstruct it if we have Q
sets of samples available, with any shifts or linear filtering

of the original signal. This implies that we can perform

the following steps to obtain the correctly antialiased views

V̂q(k) from the sampled light field:

1. Use a reconstruction methodF(·) on all of the samples

together to obtain r, as r(u) = F({V̂q′(k′)},u) =∑
k′,q′ Ψk′,q′(u)V̂q′(k′) for some set of interpolating

kernels Ψk′,q′ ;4

2. Filter these samples with an antialiasing filter hf0

at the correct Nyquist rate f0 to obtain r̃(u) =
(hf0 � r) (u);

3. Resample to obtain the antialiased views as Ṽq(k) =
r̃(ck + s(ck)μq).

These steps may be combined into a single antialiasing filter

acting on the original samples, as

Ṽq(k) =
∑
k′,q′

h∗f0
(k′, q′,k + s̄(ck)q))V̂q′(k′) (7)

where h∗f0
(k′, q′,k) is the combined reconstruction, an-

tialiasing, and resampling kernel.

5. Approximate Light Field Antialiasing

One of the main problems in the above solution is that

the reconstruction of r from all the samples can be quite

computationally expensive, as it essentially requires run-

ning a superresolution algorithm, and working with data at

a higher resolution than the size of the views. Secondly, the

correct reconstruction filter depends on the as yet unknown

depth map. Therefore, we look at an approximate method.

5.1. Subimage Filtering

Rather than performing filtering across the whole light

field simultaneously, we consider each subimage indepen-

dently. That is, we bypass the reconstruction step, and work

directly with the subimage data. Because each subimage is

a windowed projection of r′ onto the sensor, we can project

the antialiasing filter hf0 onto the sensor in the same man-

ner, and filter the subimages to achieve a similar result. The

main difference is that at the subimage boundaries there is

some error due to the windowing by the main lens aperture.

Hence, we only consider a limited amount of antialiasing

4An ideal reconstruction filter may be derived based upon the sampling

theorem in [9], but note that in practice this corresponds to a superreso-

lution operation on the light field texture and any suitable superresolution

method may be used.
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filtering and use views that are sufficiently close to the cen-

tral view. Although different tradeoffs are possible, we con-

sider antialiasing filters with support within half of the mi-

crolens diameter and views that are within a disc of radius

d/2 from the central view. This will result in an upper limit

of the filter size. Notice that according to the sampling the-

orem, an ideal low pass filter gives a Sinc kernel; in practice

it is common practice to use a windowed version such as a

Lanczos window to avoid the infinite support of the kernel.

5.2. An Iterative Algorithm

The whole method is now explained in detail. The an-

tialiasing filter hf0 is defined on the microlens array. If

we project this onto the conjugate image at z′ and then

through each microlens onto the sensor, the scaled filter

has physical cutoff frequency ds(ck)f0, or ᾱ(ck)f0, where

ᾱ(ck) = ds̄(ck). We begin with a strong antialiasing fil-

ter, and refine this estimate based upon the estimated depth

map. Too much filtering might introduce additional solu-

tions to the energy minimization problem (1), thus reducing

sensitivity. Vice versa, too little filtering might remove the

correct solution. We summarize the algorithm as follows:

1. Initialize the depth map z(ck) to the depth at which

there would be the most aliasing in the working vol-

ume;

2. Estimate the disparity map by minimising eq. (1);

3. Rearrange the views as subimages Ŝk(q);

4. For each k, filter Ŝk(q) by hᾱ(ck)f0 , where z(ck) is

the estimated depth map.

5. Repeat from the second step until the disparity map

update is negligible.

6. Microlens Blur
So far we have only modelled the pinhole version of the

microlenses. In fact this is a worse case scenario; in practice

the same analysis holds as before, except that each pixel in-

tegrates over a larger area on the conjugate plane. Or, to put

it another way, the subimages are now subject to additional

blur, thus reducing the effects of aliasing. By taking the

additional blur into account, we now arrive at a milder an-

tialiasing filter, and examine the range of depths for which

critical aliasing is avoided.

Given an image point on the conjugate plane z′, it is

known that the microlens blur on the sensor due to a cir-

cular microlens aperture of diameter d has radius [2]

b =
dv′

2

∣∣∣∣ 1f −
1

cz − z′
− 1

v′

∣∣∣∣ . (8)
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Figure 4. Microlens blur. Top: Overlap of filter kernel size and

microlens blur radius for different depth values. Bottom: Result-

ing antialiasing kernel size for different depth values.

Because the microlenses naturally introduce blur in the

sampled radiance, one does not need to introduce as much

antialiasing as derived in the previous sections. The correct

amount of subimage antialiasing can be readily obtained by

comparing the microlens blur radius b with the antialiasing

kernel size. In the previous section we obtained that the

antialiasing filter for an array of pinhole lenses is a Sinc

filter. We define as the antialiasing kernel size the loca-

tion of the first zero of the Sinc filter, which corresponds to
1

2ᾱ(ck)f0
= t̄(ck). Then, the final antialiasing filter has a

radius that is approximated as the difference between t̄(ck)
and the microlens blur radius b, clipped from below at 0
and from above at half the diameter of the microlenses (14
pixels in the experiments with the real data). To see an illus-

tration of the final antialiasing filter used in the experiments

on real data, see Fig. 4.

7. Experiments
We have tested our method on both synthetic and

real data, kindly made available by T. Georgiev at

http://www.tgeorgiev.net.
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Figure 5. Synthetic data. Top: Light field displayed as tiled

Subimages. Bottom: Light field displayed as tiled Views.

7.1. Synthetic data

In Fig. 5, we work with simulated plenoptic camera data.

The scene consists of 5 steps at different depths, with a sum

of sinusoids texture. The two sinusoids in r(u) are at 0.2
and 1.2 times the Nyquist rate f0, therefore the higher fre-

quency causes aliasing of the views (but is still present with-

out aliasing in the subimages). The simulated scene has

disparities in the range s̄ = 0.24 to 0.44 pixels per view.

We simulate a camera with Q = 15, μ = 9 × 10−6m,

d = 0.135mm, v′ = 0.5mm, f = 0.5mm, cz = 91.5mm,

and F = 80mm. Each of the 81 views (i.e., we use the

9×9 pixel central subimage under each microlens) may be

rearranged as a 15 × 99 pixel image. Fig. 6 shows one of

the views, before and after filtering with the estimated and

true disparity maps, with the aliasing component removed.

resulting subimage detail and view for antialiasing filtering

with a few blur diameters. In Fig. 7, proceeding from top

to bottom, we show the resulting disparity maps recovered

with no antialiasing filtering, the iterative method, by using

the correct antialiasing filter and the ground truth. As we

are simulating data, we can also evaluate the performance

of the algorithm. We repeat the experiment with 16 differ-

ent depth steps, and compute the average L2 norm per pixel

of the difference between the ground truth disparity map

and the solutions obtained with different filtering methods.

Results are shown in Table 2, for the sinusoidal pattern and

2 other textures, taken from the Brodatz texture database.

Texture: Sinusoids “Bark” “Straw”

No filtering 2.656 1.822 2.256

Ideal filtering 0.568 0.954 1.152

Iterative filtering 0.662 1.032 1.273

Table 2. L2 norm error per pixel in disparity estimation (×10−3),

for different choices of filtering method and 3 different textures.

7.2. Real data

Data used in this experiments is shown in Fig. 8. The

camera settings used are those described in [4] and [6].

To appreciate the effects of correct choice of antialiasing

filter size, Fig. 9 shows the resulting subimage detail and

view for antialiasing filtering with a few blur diameters. in

Fig. 10, we show from left to right the resulting disparity

Figure 6. Antialiasing filtering. Top row: An unfiltered view

(left) and the corresponding high frequency image (right). Middle

row: View filtered with the estimated depth (left) and the corre-

sponding high frequency image (right). Bottom row: View filtered

with the true depth (left) and the corresponding high frequency im-

age (right). The view filtered with the estimated disparity map is

very close to the one obtained with the true disparity map.

Figure 7. Depth estimates. From top to bottom: Results obtained

without filtering, results obtained with the iterative method, results

obtained with the correct filtering, and ground truth. On each row

we show the disparity map obtained without regularization (left)

and with regularization (right). Notice how the results obtained

with the estimated depth are extremely similar to the ones obtained

with the correct filter (the errors at depth transitions occur due to

lack of occlusion modelling in the generative model; however this

effect does not occur with real data). Depth values are shown in

grayscale. Dark intensities correspond to points that are closer to

the camera and bright intensities correspond to points that are far

from the camera.

maps obtained at different steps of the iterative algorithm,

along with a regularised version of the final result. Notice

that there is a progressive reduction in the number of arti-

facts and that the disparity map becomes more and more

accurate. The estimated disparities lie in the range −0.34
to 0.31 pixels per view, with the book in the middle being

around the main lens plane-in-focus (zero disparity).

8. Conclusions

We have presented analysis and a method to estimate

the 3D depth map of a scene from a single plenoptic im-

age. While in camera arrays 3D depth estimation is carried

out by using standard multi-view geometry algorithms, we

show that in a plenoptic camera aliasing between the views

may compromise the reconstruction. Our analysis takes into

account the geometry of a generic plenoptic camera and the

blur of microlenses. We then propose an iterative method

to compensate for aliasing, based on pre-filtering the light

field image before extracting the views. We show how this

yields improved results on synthetic and real data.

1628



Figure 8. Real data. Top: Light field displayed as tiled Subim-

ages. Bottom: Light field displayed as tiled Views.
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