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A. Upper and Lower Bounds
Our approach proposes a Bayesian generalization to Maximum a-Posteriori (MAP). It is interesting to understand what

relationship exists between MAP, the proposed expected loss, and the loss lower bound. It turns out that the logarithm of
Bayes’ utility (BU) is bounded from below by our proposed bound and from above by the log of the MAP problem. We have

log max
x̂

p(y|x̂;σn)p(x̂) = log max
x̂

p(x̂, y;σn) (MAP)

= max
x

log max
x̂

p(x̂, y;σn)

∫
G(x̄, x) dx̄

≥max
x

log

∫
p(x̄, y;σn)G(x̄, x) dx̄ (BU)

≥max
x

∫
G(x̄, x) log p(x̄, y;σn) dx̄. (lower bound)

The second equation is due to the definition of G (it integrates to 1 over x̄). Notice that as σ → 0, the lower bound tends
towards the MAP and thus they both converge to the logarithm of BU.

B. A General Family of Image Priors
We here show the applicability of our framework to a general family of image priors whose negative log-likelihood can

be written as a concave function φ of terms |Fikx̄−µj |
2

2σ2
j

. As in the main paper, Fi is a linear filter or a Toeplitz matrix, e.g.,

Fi = ∇. Again as before, Fik yields the kth entry of the output and is therefore a row vector; µj and σj are parameters.
Consequently, we have

− log p(x̄) = φ (ξ111, . . . , ξIJK) with ξijk =
|Fikx̄− µj |2

2σ2
j

. (39)

Table 5 summarizes a few choices of φ for some popular image priors. Also notice that the type-1 Gumbel prior falls into
this family as

φ (ξ0, ξ111, . . . , ξIJK) = ξ0 −
∑
ijk

wije
−ξijk with ξ0 =

|x̄|2

2σ2
0

, ξijk =
|Fikx̄− µj |2

2σ2
j

(40)

is a concave function jointly in all its arguments. These priors can have simple surrogate functions that yield simple Majoriza-
tion Minimization (MM) [3] iterations. The concavity of φ gives the following inequality and surrogate function ψ(x̄|xτ )

log p(x̄) ≥ log p(xτ )−
∑
ijk

∂φ (ξ111, . . . , ξijk, . . . )

∂ξijk

∣∣∣
ξijk=

|Fikxτ−µj |2
2σ2
j

(
|Fikx̄− µj |2

2σ2
j

− |Fikx
τ − µj |2

2σ2
j

)
.
= −ψ(x̄|xτ ).

(41)
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Image prior − log p(x̄) φ(|∇x̄(·)|22) φ′(|∇x̄(·)|22)

Gaussian 1
2σ2
x
|∇x̄|22,2 φ(w) = 1

2σ2
x

∫
w(z) dz φ′(w) = 1

2σ2
x

Total Variation 1
2σ2
x
|∇x̄|2,1 φ(w) = 1

2σ2
x

∫
(w(z) + ε)

1
2 dz φ′(w) = 1

4σ2
x

(w(z) + ε)−
1
2

Sparsity (p < 1) 1
2σ2
x
|∇x̄|2,p φ(w) = 1

2σ2
x

(
∫

(w(z) + ε)
p
2 dz)

1
p φ′(w) = (

∫
(w(z) + ε)

p
2 dz)

1
p−1 (w(z)+ε)

p
2
−1

4σ2
x

Table 5. Examples of image priors, their negative log probability density functions, the corresponding φ functions, and derivative φ′. The
small coefficient ε > 0 is to avoid division by zero.

Then, this yields the inequality∫
G(x̄, x) log p(x̄) dx̄ ≥ −

∫
G(x̄, x)ψ(x̄|xτ ) dx̄ (42a)

= −
∫
G(x̄, x)

∑
ijk

∂φ (ξ111, . . . , ξijk, . . . )

∂ξijk

∣∣∣
ξijk=

|Fikxτ−µj |2
2σ2
j

|Fikx̄− µj |2

2σ2
j

dx̄+ const (42b)

= −
∑
ijk

∂φ (ξ111, . . . , ξijk, . . . )

∂ξijk

∣∣∣
ξijk=

|Fikxτ−µj |2
2σ2
j

|Fikx− µj |2

2σ2
j

+ const, (42c)

where all the constant terms do not depend on x.

C. Noise-Adaptive Deblurring
The noise-adaptive algorithm in the general image prior family is analogous to that in the main paper for the Gumbel prior.

We need to put all the terms together and solve the maximization of the lower bound

arg max
x,σn

∫
G(x̄, x) log p(x̄, y;σn) dx̄. (43)

Thus, we obtain the following iterative algorithm

(xτ+1, σ̂n) = arg min
x,σn

|y − k ∗ x|2 +Mσ2|k|2

2σ2
n

+N log σn +
∑
ijk

∂φ (ξ111, . . . , ξijk, . . . )

∂ξijk

∣∣∣
ξijk=

|Fikxτ−µj |2
2σ2
j

|Fikx− µj |2

2σ2
j

.

(44)

We can now solve explicitly for σ̂n and, as in the main paper, obtain

σ̂2
n = 1

N

[
|y − k ∗ x|2 +Mσ2|k|2

]
. (45)

This closed form can be incorporated in an iterative algorithm and yields

xτ+1 = arg min
x

N
2 log

[
|y − k ∗ x|2 +Mσ2|k|2

]
+
∑
ijk

∂φ (ξ111, . . . , ξijk, . . . )

∂ξijk

∣∣∣
ξijk=

|Fikxτ−µj |2
2σ2
j

|Fikx− µj |2

2σ2
j

. (46)

In the noise-blind deblurring formulation we can explicitly obtain the gradient descent iteration

xτ+1 = xτ − α

[
λτK>(Kxτ − y) +

∑
ijk

F>ik
∂φ (ξ111, . . . , ξijk, . . . )

∂ξijk

∣∣∣
ξijk=

|Fikxτ−µj |2
2σ2
j

Fikx
τ − µj
σ2
j

]
. (47)

for some small step α > 0, where xτ is the solution at gradient descent iteration τ and, as in the main paper, the noise
adaptivity is given as λτ = N

|y−Kxτ |2+Mσ2|k|2 .



TV-L2 Noise-Adaptive Deblurring. Following from Eq. (47) the case of TV-L2 is then readily obtained as the gradient
descent iteration

xτ+1 = xτ − α

[
λτK>(Kxτ − y) +∇>

(
∇xτ

4σ2
x|∇xτ |2,1

)]
(48)

for some small step α > 0, where ∇ denotes the finite difference operator along the two coordinate axes, and xτ and λτ are
defined as before.

EPLL Noise-Adaptive Deblurring. In the case of EPLL [11], we modify the original Eq. (4) in [11] by introducing our
noise-adaptive term λτ = N

|y−Kxτ |2+Mσ2|k|2 and obtain

xτ+1 =

λτA>A+ β
∑
j

P>j Pj

−1λτA>y + β
∑
j

P>j z
τ
j

 . (49)

D. Back-Propagation in the GradNet Architecture
In the following section we derive the gradients of GradNet with respect to its parameters. We first introduce the notation

for the basic components of one stage in GradNet and then compute the gradients of this stage with respect to the parameters.
The derivatives for the other stages will be similar.

Initialization. To obtain x0
q at the stage τ = 0 we first pad the noisy blurry input using the constant boundary assumption

(i.e., zero derivative at the boundary). Then we apply 3 iterations of MATLAB’s edgetaper function to the padded noisy
blurry input. We find experimentally that this makes the reconstructed image converge faster at the boundaries.

Greedy Training. In the following derivation, we will omit the sample index q for simplicity. In the main paper, we defined
xτ+1 as

xτ+1 = xτ −

(
λτH>H + I

σ2
0

+ γτ
∑
ik

Bτik
>Bτik

)−1
λτK>(Kxτ − y) + xτ

σ2
0
−
∑
ik

F τik
>
∑
j

ŵτij exp
[
− |F

τ
ikx

τ−µj |2
2(σ2+σ2

j )

]
= xτ − (Λτ )−1ητ (50)

where we have

λτ =
N

|y −Kxτ |2 +Mσ2|k|2
, (51)

Λτ = λτH>H + I
σ2
0

+ γτ
∑
ik

Bτik
>Bτik, (52)

and

ητ = λτK>(Kxτ − y) +
xτ

σ2
0

−
∑
ik

F τik
>
∑
j

ŵτij exp

[
−|F

τ
ikx

τ − µj |2

2(σ2 + σ2
j )

]
. (53)

In the stage τ , the gradient equals

∂xτ+1

∂Θτ
= −(Λτ )−1

[
− ∂Λτ

∂Θτ
(Λτ )−1ητ +

∂ητ

∂Θτ

]
. (54)

Hence, given the loss function for stage τ

L(Θτ ) =
1

2

∣∣Cτ+1(xτ+1 − xGT)
∣∣2
2
, (55)



we can get the gradient of the loss function with respect to Θτ as

∂L(Θτ )

∂Θτ
=
∂L(Θτ )

∂xτ+1

∂xτ+1

∂Θτ
= P τ+1

[
∂Λτ

∂Θτ
(Λτ )−1ητ − ∂ητ

∂Θτ

]
= −P τ+1

[
∂ητ

∂Θτ
+
∂Λτ

∂Θτ
(xτ+1 − xτ )

]
, (56)

where we define P τ+1 = (xτ+1 − xGT)>(Cτ+1)>Cτ+1(Λτ )−1. Now we can obtain the derivative with respect to each
parameter to be learned, i.e. σ, γτ , ŵτij and fτi . To calculate ∂L(Θτ )

∂σ , we can first take the derivative ∂L(Θτ )
∂λτ , after which

∂L(Θτ )
∂σ can be easily calculated by chain rule

∂L(Θτ )

∂λτ
= −P τ+1

[
K>(Kxτ − y) +H>H(xτ+1 − xτ )

]
. (57)

∂λτ

∂σ
=

2σNM |k|2

(|y −Kxτ |2 +Mσ2|k|2)2
. (58)

Hence, we get

∂L(Θτ )

∂σ
=
∂L(Θτ )

∂λτ
∂λτ

∂σ
− P τ+1

∑
ik

F τik
>
∑
j

ŵτij exp

[
−|F

τ
ikx

τ − µj |2

2(σ2 + σ2
j )

]
|F τikxτ − µj |2σ

(σ2 + σ2
j )2

, (59)

∂L(Θτ )

∂γτ
= −P τ+1

∑
ik

Bτik
>Bτik(xτ+1 − xτ ), (60)

∂L(Θτ )

∂ŵτij
= P τ+1

∑
k

(F τik)> exp

[
−|F

τ
ikx

τ − µj |2

2(σ2 + σ2
j )

]
. (61)

We omit the derivation of ∂L(Θτ )
∂fτi

here. Since our work and shrinkage fields [7] make use of filters in the same way, the
derivation is analogous. For details we refer to the supplementary material of [7].

Joint Training. After training each stage separately, we perform a joint training similarly to shrinkage fields [7] and the
diffusion network [2], to which we refer to for more details.

E. Additional Experimental Results
In Table 7, 8 and 9 we show additional results with both the PSNR and SSIM metrics and intermediate results of our

GradNet (after 1st stage and 4th stage). We also show two more visual results in Figs. 6 and 7 at the 2% and 1% noise levels
corresponding to σ = 5.10 and 2.55. We can see that GradNet removes more blur in the flower region in Fig. 6. In the 3rd

row of Fig. 7 we also show the globally contrast-adjusted difference between each reconstruction and the ground truth. We
can see that GradNet compares favorably to EPLL on the dataset of Sun et al. Our noise-adaptive formulation is also able to
deal with colored (spatially correlated) noise. We generate different amounts of white Gaussian noise 2%, 3%, and 4% (i.e.,
σ = 5.10, 7.65, 10.20), convolve these noise images with a 3× 3 uniform filter to make noise spatially correlated and then
finally add them to the blurry image. Experiments are performed with 32 test images from [5]. Results in Table 6 show that
our noise-adaptive formulation is robust to colored noise.

PSNR SSIM

Method σ = 5.10 σ = 7.65 σ = 10.2 σ = 5.10 σ = 7.65 σ = 10.2

FD[4] (non-blind) 28.075 27.881 26.815 0.837 0.828 0.795

EPLL [11] + NE 27.352 24.099 21.683 0.709 0.556 0.444

EPLL [11] + NA 31.356 28.775 26.254 0.900 0.807 0.687
TV-L2 + NA 30.818 29.086 27.489 0.879 0.810 0.738
BD [8] 29.020 26.495 24.675 0.789 0.685 0.602
GradNet 7S 31.104 29.121 26.882 0.903 0.840 0.741

Table 6. Average PSNR(dB) and SSIM on 32 images from [5] for three different colored noise levels.



PSNR SSIM

Method σ = 2.55 σ = 5.10 σ = 7.65 σ = 10.2 σ = 2.55 σ = 5.10 σ = 7.65 σ = 10.2

FD [4] (non-blind) 30.029 28.396 27.315 26.520 0.890 0.845 0.807 0.782
RTF [6] (σ = 2.55) 32.355 26.337 21.428 17.328 0.925 0.676 0.424 0.301
CSF [7] (non-blind) 29.954 28.126 27.284 26.698 0.881 0.802 0.779 0.750
TNRD [2] (non-blind) 28.882 28.095 27.550 27.118 0.854 0.824 0.800 0.795
TV-L2 (non-blind) 30.870 28.428 27.594 26.514 0.892 0.811 0.792 0.716
EPLL [11] (non-blind) 32.028 29.789 28.312 27.196 0.920 0.874 0.836 0.803

EPLL [11] + NE [10] 31.857 29.771 28.281 27.157 0.919 0.878 0.839 0.807

EPLL [11] + NA 32.160 30.248 28.957 27.851 0.923 0.888 0.856 0.824
TV-L2 + NA 31.050 29.135 28.028 27.161 0.894 0.843 0.821 0.798
BD [8] 30.422 28.765 27.908 27.289 0.880 0.833 0.807 0.789
GradNet 1S 25.094 24.700 24.262 23.828 0.754 0.736 0.717 0.698
GradNet 4S 30.286 28.297 27.363 26.753 0.869 0.786 0.751 0.734
GradNet 7S 31.432 28.878 27.551 26.960 0.912 0.841 0.797 0.783

Table 7. Average PSNR (dB) on 32 test images from [5].

PSNR SSIM

Method σ = 2.55 σ = 5.10 σ = 7.65 σ = 10.2 σ = 2.55 σ = 5.10 σ = 7.65 σ = 10.2

FD [4] (non-blind) 30.789 28.898 27.863 27.138 0.851 0.787 0.744 0.714
EPLL [11] (non-blind) 32.049 29.601 28.252 27.338 0.880 0.807 0.758 0.721
CSF [7] (non-blind) 30.875 28.604 27.647 26.969 0.853 0.752 0.718 0.681
TNRD [2] (non-blind) 30.026 28.794 28.040 27.544 0.844 0.790 0.750 0.739

EPLL [11] + NE 32.0.22 29.600 28.249 27.340 0.878 0.807 0.758 0.724

EPLL [11] + NA 32.182 30.077 28.770 27.806 0.882 0.826 0.775 0.736
TV-L2 + NA 30.072 28.587 27.600 26.886 0.853 0.793 0.751 0.718
GradNet 1S 27.000 26.459 25.992 25.595 0.731 0.706 0.684 0.665
GradNet 4S 30.430 28.167 27.201 26.675 0.825 0.716 0.671 0.650
GradNet 7S 31.745 29.310 28.044 27.540 0.873 0.798 0.750 0.733

Table 8. Average PSNR (dB) on 640 test images from [9].

PSNR SSIM

Method σ = 2.55 σ = 5.10 σ = 7.65 σ = 10.2 σ = 2.55 σ = 5.10 σ = 7.65 σ = 10.2

FD [4] (non-blind) 24.436 23.240 22.642 22.065 0.664 0.577 0.534 0.492
EPLL [11] (non-blind) 25.377 25.531 22.545 21.905 0.712 0.590 0.521 0.476
RTF [6] (σ = 2.55) 25.702 23.454 19.833 16.939 0.732 0.607 0.403 0.280
CSF [7] (non-blind) 24.734 23.603 22.881 22.440 0.693 0.612 0.558 0.521
TNRD [2] (non-blind) 24.174 23.762 23. 270 22.865 0.690 0.631 0.589 0.550

EPLL [11] + NE [10] 25.360 23.532 22.545 21.904 0.708 0.588 0.520 0.478

EPLL [11] + NA 25.570 23.902 22.911 22.271 0.724 0.608 0.537 0.493
TV-L2 + NA 24.612 23.652 22.896 22.336 0.687 0.607 0.546 0.504
GradNet 1S 21.924 21.695 21.455 21.234 0.506 0.485 0.464 0.447
GradNet 4S 24.665 23.561 22.874 22.391 0.687 0.601 0.548 0.511
GradNet 7S 25.571 24.227 23.464 22.942 0.731 0.653 0.595 0.552

Table 9. Average PSNR (dB) on 50 test images from Berkeley segmentation dataset [1] with large blurs.



(a) Blurry input (b) Ground Truth (c) TV-L2 (d) FD [4]

(e) EPLL [11] (f) GradNet 1 stage (g) GradNet 4 stage (h) GradNet 7 stage

Figure 6. Results for the 2% noise case. PSNR results are also shown at the top left corner of the estimated images.

(a) Blurry input (b) Ground Truth (c) TV-L2 (d) FD [4]

(e) EPLL [11] (f) GradNet 1 stage (g) GradNet 4 stage (h) GradNet 7 stage

(i) Difference between EPLL and GT (j) Difference between FD and GT (k) Difference between TV and GT (l) Difference between GradNet and GT

Figure 7. Results for the 1% noise case (best viewed on screen). PSNR results are also shown at the top left corner of the estimated images.


