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Abstract

In this paper we propose a solution to blind deconvo-

lution of a scene with two layers (foreground/background).

We show that the reconstruction of the support of these two

layers from a single image of a conventional camera is not

possible. As a solution we propose to use a light field cam-

era. We demonstrate that a single light field image cap-

tured with a Lytro camera can be successfully deblurred.

More specifically, we consider the case of space-varying

motion blur, where the blur magnitude depends on the depth

changes in the scene. Our method employs a layered model

that handles occlusions and partial transparencies due to

both motion blur and out of focus blur of the plenoptic cam-

era. We reconstruct each layer support, the correspond-

ing sharp textures, and motion blurs via an optimization

scheme. The performance of our algorithm is demonstrated

on synthetic as well as real light field images.

1. Introduction

In the last decade, there has been a considerable effort to-

wards solving blind deconvolution with conventional cam-

eras [9, 28, 36, 11, 20]. Most solutions apply to scenes that

can be well approximated with a plane, i.e., when imaging

objects at a distance or when the camera rotates about its

center. However, when the depth between two objects in

the scene becomes apparent, these methods produce visi-

ble artifacts. One approach is to formulate the task as an

optimization problem with an explicit model for occlusions

(e.g., with an alpha matting model) and where depth and the

object support are reconstructed together with their sharp

texture and motion blur. Unfortunately, as discussed in sec-

tion 4.3, a simple statistical analysis reveals that conver-

gence to the optimal solution is difficult for this formula-

tion. The evaluation instead reveals that when using a single

image from a light field camera the depth layer support can

converge to the optimal value. This motivates us to consider

using this device for addressing blind deconvolution when

depth variations are significant. Moreover, we are not aware

of any method for solving blind motion deblurring in light

field (LF) cameras.

Blind deconvolution techniques developed for conven-

tional cameras cannot be directly applied to LF images, be-

cause the mechanism of image formation of a LF image dif-

fers from that of a conventional one. Due to the microlens

array present between the camera main lens and the sen-

sors, the captured image consists of repetitive and/or blurry

patterns of the scene texture. Moreover these patterns de-

pend on the camera settings and vary with depth. See Fig. 1

(a) for an example of a real motion-blurred LF image. The

problem is further exacerbated by the fact that there could

be variations in motion blur across the image due to depth

changes. A possible approach could be to extract angular

views from the LF image and apply space-varying deblur-

ring on each view separately. However, this approach is

hampered by aliasing (due to undersampling of the views)

and would yield low-resolution images which cannot be

easily merged in a single high resolution image.

In this paper, we consider a global optimization task

where all the unknowns are simultaneously recovered by

using all the information (the LF image) at once and by

applying regularization directly to all the unknowns. Our

objective is to recover a sharp high resolution scene texture

from a motion blurred LF image. However, due to depth

variations the textures on objects at different depths merge

in the captured LF image. Thus, we consider a layered rep-

resentation of the scene and explicitly model this blending

effect via an LF alpha matting. We then reconstruct a sharp

texture for each layer (alpha matte) and then compose them

in a single sharp image via the recovered alpha mattes. We

consider that the camera motion is translational on the X

and Y axes. Thus, motion blurs on each layer will be related

to each other via a scale factor. To speed up our algorithm

and to avoid local minima in this complex optimization task,

we initialize the layers by first estimating a depth map di-

rectly from the blurred light field and by discretizing the

layers. Then, we recover an initial blurry texture by undoing
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(a) (b)
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Figure 1. (a) Motion blurred LF image (zoom-in to see the mi-

crolenses). b) Recoverd texture (estimated motion blur in the insert

at the bottom-right). c) Blurred images (from Lytro sharp image

generation software). d) Image of the same scene without motion

blur (from Lytro).

the LF image formation. Finally, we cast the optimization

task with respect to all variables in a variational formulation

which we minimize via alternating minimization. Although

in this paper we consider only bilayer scenes, our model can

be extended to more general cases.

2. Related work

We briefly discuss prior works related to motion deblur-

ring and light field imaging.

Conventional motion deblurring Motion deblurring,

the problem of jointly estimating a motion blur kernel and a

sharp image is an ill-posed problem [38]. The case when

blur is the same throughout the image, has been widely

studied and impressive performance has been achieved by

recent algorithms [9, 11, 28, 36, 21]. To handle the ill-

posedness of the problem, these methods enforce priors on

the image as well as the blur kernel [20, 6]. For more details

on different approaches to the blind deconvolution problem,

we refer the reader to recent papers such as [30, 26, 35] and

the references therein.

When camera motion includes camera rotations, the blur

kernel varies across an image. Approaches based on blind

deconvolution have been adapted to handle such scenar-

ios [31, 34, 12, 16, 18, 25] by including additional dimen-

sions in the blur representation. These methods are typ-

ically more computationally demanding and the improve-

ments over shift-invariant deblurring are limited [19]. In

3D scenes, motion blur at a pixel is also related to depth at

a point. Techniques proposed in [37, 29] handle variation

of motion blur due to depth changes when camera motion

is restricted to in-plane translations. In [25] non-uniform

motion blur is considered for bilayer scenes. However, the

authors use two differently motion blurred observations, in-

stead of one as in this work. The closest work to ours is [17]

wherein the authors use a single motion blurred image as in

our case. They model camera shake by in-plane translations

and rotations and use a layered representation for the scene.

The fundamental difference with our work is that they use

a conventional camera. Thus, as shown in section 4.3, the

support of depth layers cannot be reconstructed via opti-

mization. Indeed, [17] relies on user interaction (via scrib-

bles in the alpha matting step) while our method is fully

automatic.

Plenoptic cameras, camera arrays and calibration.

Light fields can be acquired by either microlens array-based

plenoptic cameras, or through camera arrays. An important

difference between camera arrays and plenoptic cameras is

that while the spatial resolution is high in camera arrays,

angular resolution is low. In the case of the plenoptic cam-

eras, the opposite holds. For brevity, we concentrate our

discussion on plenoptic cameras. Adelson and Wang de-

veloped the first plenoptic camera in computer vision by

placing a lenticular array at the sensors [1]. Their objective

was to estimate depth from a single image. The use of mi-

crolens arrays to capture LF image by Ng et al. [24] gave

rise to portable camera designs. To overcome the limitation

of spatial resolution, techniques for super-resolving the data

up to the order of full sensor resolution have since been pro-

posed [23, 4, 2]. While in [23], the spatial resolution is im-

proved using information encoded in the angular domain, in

[4] demosaicing is incorporated as a part of the reconstruc-

tion process. Bishop and Favaro [2] use an explicit image

formation model to relate scene depth and high resolution

texture. They follow a two-step approach to achieve super-

resolution through a variational framework. Work of Brox-

ton et al. [5] also shows a fast computational scheme for LF

generation with an explicit point spread function.

Recently, techniques that demonstrate their applicability

on Lytro and Raytrix cameras have been proposed. Cho et

al. [7] develop a method for reconstructing a high reso-

lution texture after rectification and decoding of raw data.

Danserau et al. [10] and Bok et al. [3] propose calibration

schemes to estimate camera parameters that relate a pixel in

the image to rays in 3D space. Sabater et al. [27] propose a

depth estimation method that uses angular view correspon-

dences and also avoids cross talk due to demosaicking. Tao

et al. [32] propose to combine correspondence and defocus

cues in a light field image for depth estimation. Heber et
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al. [15] propose a depth estimation scheme motivated by

the idea of active wavefront sampling. Using a continuous

framework, Wanner and Goldlücke [33] develop variational

methods for estimating disparity as well as for spatial and

angular super-resolution. Other recent works of interest in

light field imaging include estimation of scene flow [14] and

alpha matte [8]. An interesting theoretical analysis of the

performance of light field cameras has been recently pre-

sented in [22] using the light transport framework.

Contributions. The contributions of our work in contrast

to the above mentioned prior work can be summarized as:

1. This is the first attempt in blind deconvolution of light

field images.

2. Our LF image formation model is the first to take into

account the effect of camera optics on depth as well as

variations of motion blur due to depth changes.

3. We handle occlusion boundaries at depth discontinu-

ities in LF images.

4. We solve for the scene depth map, occlusion bound-

aries, super-resolved texture and motion blur within a

variational framework. No user interaction is required.

3. Imaging model

In this section, we introduce the notation and describe

our approach to model a motion blurred light field image.

We consider that the 3D scene is composed of two depth

layers. Initially, we consider a single depth layer scenario

and subsequently extend our model to two layers.

3.1. Single layer model

Following the approach in [2, 5], we relate the light field

image l formed at the image sensor plane to the scene tex-

ture f through a point spread function (PSF). For conve-

nience, the texture f is defined at the microlens array plane.

Let u = [u1 u2]
T denote the discretized coordinates of a

point on the microlens array plane and x = [x1 x2]
T denote

a pixel location. A space-varying PSF Ps(u)(x,u) relates

the LF image and scene texture via

l(x) =
∑

u

Ps(u)(x,u)f(u). (1)

where the PSF Ps (u) depends on the scene depth s (u) as

well as the camera parameters. When the camera parame-

ters and the scene depth are known, the entries of the ma-

trix Ps can be explicitly evaluated [2, 5]. The evaluation

of Ps involves finding the intersection between the blur cir-

cles generated by the main lens and the microlens array due

to a point light source in space [2]. For convenience, we

abuse the notation to denote vectorial representations of LF

image and scene texture by l and f , respectively and a ma-

trix version of PSF by Ps. The LF image generation is then

expressed as a matrix vector product

l = Psf. (2)

Typically, the LF image will be of the order of megapixels

and the texture resolution would be a fraction (say 1
3 ) of that

of the LF image. Consequently, the matrix Ps would turn

out to be too large for practical computations. However, the

intersection pattern between the main lens and microlens

blur circles is repetitive resulting in the periodicity of PSF

along the domain of microlens array plane. Consequently,

by finding the PSF for texture elements corresponding to

only one microlens, one has enough information about the

whole PSF. This property enables one to express the LF im-

age generation in Eqn. (1) as a summation of convolutions

between a set of rearranged components of f with the com-

ponents of light field PSF. These convolutions can be im-

plemented in parallel [5]. We would like to point out that

throughout the paper, the matrix vector products of the type

in Eqn. (2) are implemented as such sums of convolutions.

Due to relative motion between the camera and scene,

if the texture undergoes motion blur, one could express the

light field image as

l = PsMf (3)

where M denotes a matrix representing the motion PSF.

3.2. Bilayer model

A naı̈ve approach to model bilayer scenes would be to

superpose components of motion blurred light field images

from each layer separately. However, this model causes ar-

tifacts at depth boundaries even when synthesizing an LF

image. We propose a more realistic, and still computation-

ally simple, model of bilayer scenes by considering occlu-

sion effects via an extension of the alpha matting model of

Hasinoff and Kutulakos [13].

Initially, we discuss the model by neglecting the effect of

motion blur. Let s denote the scene depth map defined on

the same domain as the texture f . We assume that s takes

2 distinct values s1, s2. The region corresponding to the

smallest depth s1 is considered as the first support Ω1, i.e.,

Ω1 (u) =

{

1 if s (u) = s1
0 if s (u) 6= s1.

The second layer support is defined to be unity. Thus, in

general, we define layer supports such that

Ωi (u) =

{

1 if s (u) ≤ si
0 if s (u) > si.

Since all depth values are less than or equal to s2, the second

layer Ω2 is always defined to be 1 and is never estimated
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or shown in the figures. For a depth layer i with support

function Ωi, we define a function αi as

αi = PiΩi, (4)

where Pi is the LF PSF for layer i (with depth si).

The LF image l can be expressed as a weighted sum of

contributions from each depth layer having texture fi, i.e.,

l = β1 ⊙ P1f1 + β2 ⊙ P2f2 (5)

and the weights βi are given by

β1 = α1

β2 = α2 ⊙ (1− α1) (6)

where ⊙ denotes the Hadamard product (element by ele-

ment product).

When there is relative motion between the camera and

scene, the texture of a depth layer as well as its support

undergo a translation. Let M1 denote the motion blur for

the first layer. We consider M1 to be the reference blur as

it is the largest (motion blur decreases with distance). Since

we restrict the camera motion to translations alone, the blur

at the second layer M2 would be a scaled version of the

reference blur where the scale factor is given by the depth

ratio [29]. We can now express the blurred light field image

lb using the following equations:

βb
i = αb

i ⊙
i−1
∏

k=1

(1− αb
k), αb

i = PiΩ
b
i , Ωb

i = MiΩi

lb = βb
1 ⊙ lb1 + βb

2 ⊙ lb2, lbi = Pif
b
i , f b

i = Mifi. (7)

Notice that due to relative motion, the layers also move,

and hence we need to introduce motion blurred layers Ωb
i .

In Fig. 4, we give an example of different components in

the imaging model by assuming that the scene depth is as

shown in Fig. 3 (d) (the chosen motion blur PSF is shown

in the inset of Fig. 5 (d)).

4. Light field motion deblurring

Given a motion blurred LF image lo, we initially estimate

its depth map s by establishing correspondences across dif-

ferent views present in the LF image. We then quantize the

depth map to 2 levels to arrive at a discrete depth map that

takes values from the set {s1, s2}.

4.1. Depth estimation

Our depth estimation scheme is based on exploiting the

correspondences across views within an LF image. We es-

timate the depth map s at the same resolution at which f is

defined and assume that the scene is Lambertian (as in tra-

ditional stereo methods). Suppose that a texture element at

a point u is imaged by microlenses with centers ci. Then,

the corresponding angular index θi in the sub image corre-

sponding to the microlens with center ci is given by

θi = Λ(u)(ci − u). (8)

The term Λ(u) is also called the magnification factor and is

related to scene depth s(u) via

Λ(u) =
v

v′ − z′
z′

v′
with

1

z′
=

1

F
−

1

s (u)
(9)

where F denotes the camera focal length, v denotes the dis-

tance between the microlens array plane and image sensors,

and v′ is the distance between the main lens and microlens

array plane [2].

In our depth estimation algorithm, the magnification Λ
is analogous to a disparity map in stereo. We use a plane

sweep approach and select a set of depth values which are

then mapped to the magnification via Eqn. (9). For each

magnification value we use Eqn. (8) to determine all possi-

ble correspondences (ci, θi) with i ∈ N (u), where N (u)
is the set of immediate neighboring microlenses around the

pixel u. Firstly, we determine the closest microlens c0 to

the coordinate u and find the corresponding θ0 (the 2D co-

ordinate local to a microlens). We then compute a matching

cost associated to the values of the LF image at these pixels

E0(u, sj) =
∑

i∈N (u)

|l(ci + θi)− l(c0 + θ0)|

l(ci + θi) + l(c0 + θ0)
(10)

where Λ(u) has been computed with s(u) = sj . We then

convexify the matching cost E0 along the depth axis by tak-

ing its lower convex envelopes. Finally, we estimate an ini-

tial depth map by solving a regularized (convex) minimiza-

tion algorithm of the form

ŝ = argmin
s

µ
∑

u

E0(u, s(u)) + |∇s|2 (11)

where µ > 0 is a constant that defines the amount of regu-

larization and the last term is the total variation of the depth

s. Notice that the depth map maps to the real line, and hence

it is necessary to interpolate the matching cost E0 during the

minimization. The cost is minimized by a simple gradient

descent. Finally, we discretize the estimated depth map by

selecting two modes from its histogram to arrive at the val-

ues s1 and s2.

4.2. Alternating minimization scheme

We follow an energy minimization approach to estimate
the scene texture and the motion blur at each depth layer.
From the discretized depth map, we initialize the supports
Ω1,Ω2. We then refine the supports because our depth es-
timation process could have errors. Errors may be caused
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by mismatches due to motion blur in the LF image. Based
on the image formation model in Eqn. 7, the data term
E (fi,Mi,Ωi) can be written as
∣

∣

∣

∣

∣

(P1(M1Ω1))⊙ (P1(M1f1))

+ (1− P1(M1Ω1))⊙ (P2(M2))⊙ (P2(M2f2))− l0

∣

∣

∣

∣

∣

2

(12)

where l0 is the measured LF image. To handle the ill-
posedness of the problem, we also incorporate isotropic to-
tal variation regularization for both texture and support. We
also enforce that the blur kernel for the second layer is con-
sistent with the reference blur kernel M1. Thus, the energy
functional to be minimized is given by

J (fi,Mi,Ωi) = E (fi,Mi,Ωi) +

2
∑

i=1

λf |∇fi|2 + λΩ|∇Ω1|2

+ λM |D2vec(M1)− vec(M2)|
2

(13)

where λf , λΩ, and λM are regularization parameters for

texture, support and motion blur, respectively. The opera-

tor vec(·) denotes the mapping of the motion blur in matrix

form to a vector with its entries in lexicographical order.

The matrix D2 down-scales the reference blur M1 by a fac-

tor corresponding to the 2nd depth value. The cost function

in Eqn. 13 is minimized using gradient descent. We follow

an alternating minimization approach to update each layer

of texture fi, support Ωi, and motion blur Mi. The gradients

of the energy E with respect to the texture fi, the support

Ωi and the motion blur Mi are given in Table 1.

4.3. Feasibility of support estimation

We perform a simple statistical analysis to check whether

the data cost E (fi,Mi,Ωi) in Eqn. (12) can be minimized

with respect to Ω1. We synthetically generate l0 by select-

ing realistic values for the variables f1, f2, P1, P2, M1, M2,

and Ω1. We add Gaussian noise to the true value of Ω1 to ar-

rive at Ωn
1 . When Ωn

1 is considered as the current estimate,

the noise, and the gradient of energy with respect to Ωn
1 cor-

respond to the terms ∆ and δ, respectively in Fig. 2 (left).

We evaluate the inner product between ∆ and δ at 2,500
random samples around the exact solution. We also repeat

this process for the scenario of conventional camera. i.e.,

by neglecting the effect of the LF PSFs P1 and P2. The plot

in Fig. 2 (right) shows the unnormalized distribution (ordi-

nate) of inner products (abscissa). The distribution of inner

products of the conventional camera shows that the gradi-

ents are equally distributed between the negative and posi-

tive side of the abscissa. This means that a gradient descent

would move randomly towards or away from the correct

minimum, a behavior that denotes ambiguities in the solu-

tion and the lack of a valley structure. In contrast, the distri-

bution of the inner products of the LF camera shows a clear

δ
∆

−0.1 −0.05 0 0.05 0.1
0

500

1000

1500

2000

 

 

LF

conventional

Figure 2. Left: illustration of the stochastic analysis. The three

ellipses denote the level curves of a cost function. The dot in the

middle of the smallest ellipse denotes a local minimum. In this

scenario, the gradient vector δ at samples in the vicinity of the

local minimum should form angles of less than 90 degrees with

the ideal vector ∆ connecting the sample to the local minimum.

Right: stochastic evaluation of the cost functions in the case of

a light field camera (red solid) and in the case of a conventional

camera (blue dashed).

(a) (b) (c) (d)

Figure 3. Depth maps used in synthetic experiments.

preference for the positive side of the abscissa, thus mov-

ing towards the correct direction. Also, notice that the inner

products tend to be very small. This means that the gradient

descent would converge very slowly to the correct solution,

a behavior that we also observe in our experiments.

5. Experimental results

We tested our method on synthetic as well as real experi-

ments. In our synthetic experiments, we artificially simulate

space-varying motion blurred LF images assuming rectan-

gular as well as hexagonal arrangement of microlens arrays.

We consider the depth maps to have different arrangements

of the layer boundaries as shown in Figs. 3 (a)-(d). We

performed nine experiments by randomly combining im-

ages, kernels and depth maps. For the simulation, we use

the scene texture and motion blur kernels from the dataset

in [21]. While we resize the scene texture to be of size

200 × 200, the motion blur kernels are resized to 7 × 7.

Apart from the motion blur kernels in [21], we addition-

ally include a PSF with three impulses that are spread to the

corners of the support of the PSF. We generate an LF im-

age, according to our model in Eqn. 7. We use a 40 × 40
microlens array, and assume realistic values for the camera

settings, similar to those used in the real experiments (see

Table 3), and scene depths between 45 to 110 cm.

A representative example of our synthetic experiment for
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Table 1. Summary of all the gradients.

∆
.
=(P1(M1Ω1)) ⊙ (P1(M1f1)) + (1 − P1(M1Ω1)) ⊙ (P2(M2)) ⊙ (P2(M2f2)) − l0

∂E

∂f1

=M
T
1 P

T
1

(

(P1(M1Ω1)) ⊙ ∆
)

∂E

∂f2

=M
T
2 P

T
2

(

(1 − P1(M1Ω1)) ⊙ (P2(M2Ω2)) ⊙ ∆
)

∂E

∂Ω1

=M
T
1 P

T
1

(

(

Pi(Mifi) − (P2(M2f2)) ⊙ (P2(M2Ω2))
)

⊙ ∆

)

∂E

∂M1

=Ω
T
1

(

P
T
1

(

(

P1(M1f1) − (P2(M2f2)) ⊙ (P2(M2Ω2))
)

⊙ ∆

))

+ f
T
1

(

P
T
1

(

(P1(M1Ωi)) ⊙ ∆
)

)

∂E

∂M2

=Ω
T
2

(

P
T
2

(

(

1 − P1(M1Ω1)
)

⊙

(

P2(M2f2)
)

⊙ ∆

))

+ f
T
2

(

P
T
2

(

(

1 − P1(M1Ω1)
)

⊙

(

P2(M2Ω2)
)

⊙ ∆

))

bilayer rectangular arrays is shown in Fig. 5. The ground

truth image and the reference motion blur kernel (insert at

bottom-right) are shown together in Fig. 5 (d). For visual

comparison, we show the image obtained by applying mo-

tion blur kernel on the latent image (according to the depth

map of Fig. 3 (a)) in Fig. 5 (e). From the resultant LF im-

age (shown in Fig. 5 (c)), we estimate the depth and solve

for the layer support, latent image and motion blur kernel.

While the ground truth supports is shown in Fig. 5 (a), the

corresponding estimated support is shown in Fig. 5 (b). De-

spite regions in the image with significantly less texture, we

see that the estimated support matches the true support. The

recovered latent image and motion blur kernel are shown in

Fig. 5 (f). It is to be noted that the restored image is quite

close to the true image and there are no artifacts at the depth

discontinuities thanks to our layered model.

In all our experiments, the same regularization parame-

ters were used: λf = 10−5, λΩ = 5 × 10−4, and λM =
10−3. For evaluation, we use the Peak Signal-to-Noise ra-

tio (PSNR) metric. Between the blur kernel and the sharp

image there is a translational ambiguity. Hence, for each

image we take the maximum PSNR among all the possi-

ble shifts between the estimated and ground truth image. In

Table 2 we show the mean and standard deviation PSNR

values.

We perform real experiments using the Lytro Illum cam-

era. We imaged a 3D scene with objects placed at differ-

ent distances from the camera ranging from 50 cm to 100
cm. We placed the camera on a support to restrict its mo-

tion to in-plane translations. Due to the high dimensional-

ity, we extract specific regions from the full light field im-

age and perform reconstruction on these regions separately.

Each region contains a pair of objects at different depths.

The camera settings are summarized in Table 3. We ex-

tract, rectify and normalize the Lytro LF images by using

the Light Field Toolbox V0.4 software.1 Through our alter-

nate minimization scheme, we solve for the support, sharp

texture and motion blur. In contrast to the scenario of con-

1http://www.mathworks.com/matlabcentral/fileexchange/49683-light-

field-toolbox-v0-4

ventional camera images, our estimate of layer support im-

proves as the iterations progress. For one of the examples,

we show the evolution of support in Fig. 7. In Fig. 6 from

left to right we show: input LF image region, reconstructed

depth map (Lytro), reconstructed depth map (ours), final es-

timated supports, reconstructed blurred image from Lytro

(it does not perform motion deblurring), reconstructed im-

age from Lytro of the same static scene without motion blur,

and reconstructed sharp image (composite) with estimated

motion blur at the first layer (insert at the bottom-right). We

only show the estimated motion blur on the first layer as the

other layers are just scaled (down) versions of that blur. No-

tice how the proposed scheme can effectively remove mo-

tion blur from the LF images by comparing them with the

images generated by the Lytro software of the same scene

without motion blur.

To demonstrate the consistency in our estimates, we sim-

ulate different sub-aperture views from the texture and layer

support. We generated the left view shown in Fig. 8 (a) by

applying a shift on each layer of the texture and its sup-

port. For a particular depth layer, the shift remains the same

for the texture as well as for the support, and it changes as

the depth changes. Similarly, we generated the right view

in Fig. 8 (b). In both these images, we observe the effect

of occlusion/disocclusion without any artifacts at the depth

boundaries indicating that our estimates are accurate.

We also tested our algorithm on a scene with three depth

layers as shown in the last row of Fig. 6. Although we see

that the estimated texture is sharper than the Lytro rendering

of the blurred LF image, when compared to the rendering of

the sharp scene, the result shows artifacts. We believe that

this is due to the increased complexity of the model and the

need for higher depth estimation accuracy.

6. Conclusions

We introduced the novel problem of restoring a blurry

light field image. We consider depth variations and model

partial transparencies at occlusions. Through an energy

minimization framework, we estimated the depth map as

a set of discrete layers, sharp scene textures, and the mo-
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Figure 4. Components of the imaging model for the scene in Fig. 3 (d) : (a) Ω1, (b) Ωb
1, (c) αb

1 , (d) αb
2, (e) βb

1, (f) βb
2.

(a) (b) (c) (d) (e) (f)

Figure 5. Two layer hexagonal scenario: (a) and (b) ground truth and recovered first layer supports; (c) simulated motion blurred LF image;

(d) true image and blur kernel (e) blurry texture; f) recoverd texture and kernel.

Table 2. In this table we show the average (µ) and the standard

deviation (σ) of the PSNR metrics for 9 synthetically generated

motion blurred light fields.

Rectangular Hexagonal

µ 29.1229 24.2006

σ 1.4832 3.0105

Table 3. Summary of the Lytro Illum settings.

vertical rows 70

horizontal microlenses 62

pixels per microlens 16 × 16

vertical spacing between even rows 28 pixels

main lens focal length (F ) 0.0095

pixel size 1.4 µm

main lens F-number 2.049

microlens spacing 20 µm

main lens to microlens array distance 9.8 mm

microlens array to sensor distance 47.8 µm

microlens focal length 48.0 µm

shutter 1/2 s

ISO 80

EV +0.7

tion blur kernels by enforcing suitable priors. In contrast,

for conventional images, estimation of layer support is not

feasible as seen in our simulation. The proposed method is

able to adapt to scaling of motion blur and return artifact-

free boundaries at depth discontinuities. Our bilayer image

formation model can be generalized to multiple depth lay-

ers. Since the LF image generation is parallelizable, an ef-

ficient implementation of our algorithm can be achieved by

using GPUs. Further extensions of our work include han-

dling camera rotations and dynamic scenes.

Acknowledgements

This work has been supported by the Swiss National Sci-

ence Foundation (Project No. 153324).

References

[1] E. H. Adelson and J. Y. A. Wang. Single lens stereo

with a plenoptic camera. TPAMI, 14:99–106, 1992. 2

[2] T. Bishop and P. Favaro. The light field camera: ex-

tended depth of field, aliasing and superresolution.

TPAMI, 34(5):972–986, 2012. 2, 3, 4

[3] Y. Bok, H.-G. Jeon, and I. S. Kweon. Geometric cal-

ibration of micro-lens-based light-field cameras using

line features. In ECCV, 2014. 2

[4] C. A. Bouman, I. Pollak, and P. J. Wolfe, editors. Su-

perresolution with the focused plenoptic camera, vol-

ume 7873. SPIE, 2011. 2

[5] M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. An-

dalman, K. Deisseroth, and M. Levoy. Wave optics

theory and 3-d deconvolution for the light field micro-

scope. Opt. Express, 21:25418–25439, 2013. 2, 3

[6] T. Chan and C.-K. Wong. Total variation blind de-

convolution. IEEE Transactions on Image Processing,

7(3):370–375, 1998. 2

[7] D. Cho, M. Lee, S. Kim, and Y.-W. Tai. Modeling the

calibration pipeline of the lytro camera for high qual-

ity light-field image reconstruction. In ICCV, 2013.

2

16



Figure 6. Experiments on real images (the first, second and fifth rows show results from the same scene and the third and fourth rows show

results from another scene 2): First column: light field images (cropped region), second and third columns are depth maps from Lytro

and our depth estimation. Fourth column: final supports. Fifth and sixth columns are blurred and no-blur texture generated from LYTRO

software. The seventh column shows the estimated sharp image (merged with the estimated supports) with the estimated motion blur as an

insert at the bottom-right corner.

Figure 7. Evolution of layer support of the scene shown in second row of in Fig. 6

[8] D. Cho, M. Lee, S. Kim, and Y.-W. Tai. Consistent

matting for light field images. In ECCV, 2014. 3

[9] S. Cho and S. Lee. Fast motion deblurring. ACM

Trans. Graph., 28(5):1–8, 2009. 1, 2

[10] D. G. Dansereau, O. Pizarro, and S. B. Williams. De-

coding, calibration and rectification for lenselet-based

plenoptic cameras. In CVPR, 2013. 2

[11] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and

W. T. Freeman. Removing camera shake from a sin-

gle photograph. ACM Trans. Graph., 25(3):787–794,

2006. 1, 2

[12] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Cur-

less. Single image deblurring using motion density

functions. In ECCV, 2010. 2

[13] S. W. Hasinoff and K. N. Kutulakos. A layer-based

restoration framework for variable-aperture photogra-

phy. In ICCV, pages 1–8, 2007. 3

[14] S. Heber and T. Pock. Scene flow estimation from

light fields via the preconditioned primal-dual algo-

rithm. volume 8753 of LNCS, pages 3–14. 2014. 3

[15] S. Heber, R. Ranftl, and T. Pock. Variational shape

from light field. In EMMCVPR, pages 66–79. 2013. 2

17



(a) (b)

Figure 8. View synthesis: (a) Synthesized left view. (b) Synthe-

sized right view.

[16] M. Hirsch, C. J. Schuler, S. Harmeling, and

B. Scholkopf. Fast removal of non-uniform camera

shake. In ICCV, 2011. 2

[17] Z. Hu, L. Xu, and M.-H. Yang. Joint depth estimation

and camera shake removal from single blurry image.

In CVPR, 2014. 2

[18] H. Ji and K. Wang. A two-stage approach to blind

spatially-varying motion deblurring. In CVPR, 2012.

2
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