Blind Deconvolution

Task: Estimate a sharp image \(u \) and the point spread function (PSF) \(k \) from a single blurry image \(f \).

Clearing the fog: Several approaches, which one is right?

Method 1: Deconvolution

Method 2: Energy reweighting.

Method 3: Total Variation Blind Deconvolution: The Devil is in the Details

Method 4: Edge enhancement.

We address the following question: Why do these algorithms work despite theoretical results showing that they cannot?

Summary of our findings

1) The findings of Levin et. al. [1] are correct: the exact minimization of a large class of energies with texture priors leads to a no-blur solution.

2) Many algorithms still work because they do not minimize the claimed cost.

3) Delayed normalization (scaling) of the blur is key.

Total Variation Blind Deconvolution

Blind deconvolution is typically solved by minimizing a variation of the following cost function.

\[
\text{arg min}_{u, k \geq 0 \mid k \in K} \frac{1}{2} \| k \ast u - f \|^2_2 + \lambda \| u \|_{TV}
\]

Theorem 1: A large class of regularization terms, such as the total variation, favor the blurry image and not the sharp one (extension of the results in Levin et. al. [1]).

\[
\| A v \|_1 \leq \| B v \|_1
\]

Projected Alternating Minimization

A common approach to minimize (1) is to alternate between the following steps.

\[
u^t \leftarrow \text{min} \frac{1}{2} \| u^{t-1} \ast k - f \|^2_2 + \lambda \| u \|_{TV}
\]

Proposition: The energy in (1) is not minimized by the Projected Alternating Minimization (PAM) algorithm.

\[
k^t \leftarrow \text{max} \{k^{t-1}, 0\} / \| k^{t-1} \|_1
\]

Theorem 2: for a 1D step function blurred with a blur of support equal to 3 pixels and for \(\lambda > \lambda_p \), the PAM algorithm estimates the true blur in two steps.

Experimental Validation

The PAM algorithm without any additional heuristics achieves state-of-the-art results.

References:

Code available at:

http://www.cvg.unibe.ch/Perrone/Tvdb/