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Experimental Validation 

Task: Estimate a sharp image u and the point spread function (PSF) 
k from a single blurry image f. 
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Clearing the fog: Several approaches, which one is right?   

Summary of our findings 
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The PAM algorithm without any additional heuristics achieves state-
of-the-art results. 

Method 4: 
Edge enhancement. 

Method 3: 
Use of filtered images. 

Method 2: 
Energy reweighting. Method 1:  

Sharp image 
marginalization. 

Levin et. al. [1] show that these algorithms 
are not supposed to work. Yet they do. 

We address the following question: Why do these algorithms 
work despite theoretical results showing that they cannot? 

1) The findings of Levin et. al. [1] are correct: the exact 
minimization of a large class of energies with texture 
priors leads to a no-blur solution. 
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2) Many algorithms still work because they do not 
minimize the claimed cost.  uk 
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Blind deconvolution is typically solved by minimizing a variation of 
the following cost function.  Regularization parameter 

Total variation regularization 
Data fitting term 

(1) 

A common approach to minimize (1) is to alternate between the 
following steps. 
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Theorem 1: A large class of regularization 
terms, such as the total variation, favor the 
blurry image and not the sharp one 
(extension of the results in Levin et. al. [1]). 
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Projected Alternating Minimization 

Proposition: The energy in (1) is 
not minimized by the Projected 
Alternating Minimization (PAM) 
algorithm. 
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Theorem 2: for a 1D step function blurred with a blur of support 
equal to 3 pixels and for λ > λ0, the PAM algorithm estimates the 
true blur in two steps.   
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Theorem 3: for the same 
signal and value of λ of 
Theorem 2 the Alternating 
Minimization (AM) algorithm 
either converges to the no-
blur solution or becomes 
unstable. 
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3) Delayed normalization (scaling) of the blur is key. 
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Additional 
Error 
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  Output of step  
A non Dirac delta blur cannot 
be solution of step  2	
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