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In this technical report we provide proofs for the theo-
rems presented in [8] and additional experimental results.

1. Proofs

We first prove the following Lemma.

Lemma 1.1 Let f be a 1D discrete signal of the following
form

f [x] =



δ1 − U x = −L
−U x ∈ [−L+ 1,−2]

δ0 − U x = −1
−δ1 + U x = 0

U x ∈ [1, L− 2]
−δ0 + U x = L− 1

(1)

for some positive constants δ0, δ1 > 0, U > max{δ0, δ1},
and L ≥ 2. If λ ≥ max((L − 1)δ0 − δ1, (L − 1)δ1 − δ0),
then the solution û[x] to the following problem

û[x] = argmin
u

1

2

L−1∑
x=−L

(u[x]− f [x])2

+ λ

L−2∑
x=−L

|u[x+ 1]− u[x]|. (2)

is

û =

{
−Û x ∈ [−L,−1]
Û x ∈ [0, L− 1]

(3)

where Û = −λ+δ0+δ1L +U . Also, if λ ≥ UL− δ0− δ1 then
Û = 0.

Proof. The solution of problem (2) can also be written as
û[x] = ŝ[x]− ŝ[x− 1], x ∈ [−L,L− 1], where ŝ is found
by solving the taut string problem (e.g., see Davies and Ko-

vac [2])

ŝ[x] = argmin
s

L−1∑
x=−L

√
1 + |s[x]− s[x− 1]|2 (4)

s.t. max
x∈[−L,L−1]

|s[x]− r[x]| ≤ λ and

s[−L− 1] = 0, s[L− 1] = r[L− 1]

where r[x] =
∑x
y=−L f [y] with x ∈ [−L,L− 1].

Given the explicit form of f in eq. (1) we obtain that

r[x] =



δ1 − U x = −L
δ1 − U(x+ L+ 1) x ∈ [−L+ 1,−2]

δ0 + δ1 − UL x = −1
δ0 − U(L− 1) x = 0

δ0 − U(L− 1− x) x ∈ [1, L− 2]
0 x = L− 1.

(5)

First, notice that the smallest value1 of r is
minx∈[−L,L−1] r[x] = r[−1] = δ0 + δ1 − UL and occurs
at x = −1. Next, consider solving the taut string problem
by enforcing only the constraint |s[−1] − r[−1]| ≤ λ. The
cost of the taut string problem is minimum for the shortest
path s through a point at x = −1. We can decompose
such path into the concatenation of the shortest path from
x = −L− 1 to x = −1 and the shortest path from x = −1
to x = L − 1. Given that each of these paths are only
constrained at the end points, a direct solution will give a
line segment between the end points, i.e.,

s[x] =

{
x+L+1
L s[−1] x ∈ [−L− 1,−2]

L−1−x
L s[−1] x ∈ [−1, L− 1].

(6)

The value s[−1] that yields the shortest path and satisfies
the constraint

r[−1]− λ ≤ s[−1] ≤ r[−1] + λ (7)

1Because of the constraints onU , δ0 and δ1, we have that f , the deriva-
tive of r, satisfies f [x] < 0 for x < 0 and f [x] > 0 for x ≥ 0.

1



is s[−1] = δ0 + δ1 −UL+ λ when λ ≤ UL− δ0 − δ1 and
s[−1] = 0 otherwise.

Now, we will show that, given λ ≥ max((L − 1)δ0 −
δ1, (L−1)δ1−δ0), the above shortest path s is also the solu-
tion ŝ to the taut sting problem (4) with all the constraints. It
will suffice to show that this path satisfies all the constraints
in the taut string problem. Then, since it is the shortest path
with a single constraint, it must also be the shortest path for
problem (4). To verify all the constraints, we only need to
consider 4 cases:

x = −L→
∣∣ 1
L (δ0 + δ1 − UL+ λ)− δ1 + U

∣∣ < λ

x = −2→
∣∣∣ 1L (δ0 + δ1 − UL+ λ)− δ1

L−1 + U
∣∣∣ < λ

L−1

x = 0→
∣∣∣ 1L (δ0 + δ1 − UL+ λ)− δ0

L−1 + U
∣∣∣ < λ

L−1

x = L− 2→
∣∣ 1
L (δ0 + δ1 − UL+ λ)− δ0 + U

∣∣ < λ

as all the others are directly satisfied when these are. By
direct substitution, one can find that λ ≥ max((L− 1)δ0 −
δ1, (L−1)δ1−δ0) satisfies all the above constraints as long
as L ≥ 2. We can then obtain û[x] = ŝ[x]− ŝ[x− 1] from
eq. (6) and write

û[x] =

{
1
L (δ0 + δ1 − UL+ λ) x ∈ [−L,−2]
− 1
L (δ0 + δ1 − UL+ λ) x ∈ [−1, L− 1]

(8)
and hence Û = − δ0+δ1+λL + U .

Finally, as already mentioned, when λ ≥ UL − δ0 − δ1
we have s[−1] = 0. Thus, s[x] = 0, ∀x ∈ [−L− 1, L− 1]
and also û[x] = 0, ∀x ∈ [−L,L− 1].

Theorem 3.2. Let f be a 1D discrete noise-free signal,
such that f = k0 ∗ u0, where u0 and k0 are two unknown
functions and ∗ is the circular convolution operator. Let us
also constrain k0 to be a blur of support equal to 3 pixels,
and u0 to be a step function

u0[x] =

{
−U x ∈ [−L,−1]
U x ∈ [0, L− 1]

(9)

for some parameters U and L. We impose that L ≥ 2 and
U > 0. Then f will have the following form

f [x] =



δ1 − U x = −L
−U x ∈ [−L+ 1,−1]

δ0 − U x = −1
−δ1 + U x = 0

U x ∈ [1, L− 2]
−δ0 + U x = L− 1

(10)

for some positive constants δ0 and δ1 that de-
pend on the blur parameters. Then, there exists

λ ≥ max((L − 1)δ0 − δ1, (L − 1)δ1 − δ0) such that
the PAM algorithm estimates the true blur k = k0 in two
steps, when starting from the no-blur solution (f, δ).

Proof. By assuming that the initial blur is a Dirac
delta, the first step of the PAM algorithm solves the
following problem

û = argmin
u

1

2
||u− f ||22 + λ||u||BV . (11)

The solution u of the problem (11) when λ = max((L −
1)δ0 − δ1, (L− 1)δ1 − δ0) is given by Lemma 1.1, and it is

û =

{
−Û x ∈ [−L,−1]
Û x ∈ [0, L− 1]

(12)

with Û = −λ+δ0+δ1L +U . Notice that û is also a zero-mean
signal.

Since we can always express a zero-mean step as another
scaled zero-mean step, we can write

û = au0 (13)

for some constant a. We then solve the second step of the
PAM algorithm

k̂ = argmin
k
||k ∗ û− f ||22 (14)

and since we can write

‖k ∗ û− f‖22 = ‖k ∗ au0 − f‖22 = ‖k ∗ au0 − k0 ∗ u0‖22
= ‖(ak − k0) ∗ u0‖22 (15)

we have k̂ = k0/a. Finally, by applying the last two steps
of the PAM algorithm one obtains k̂ = k0.

Theorem 3.3. Let f , u0 and k0 be the same as in Theorem
3.2. Then, for any max((L− 1)δ0 − δ1, (L− 1)δ1 − δ0) <
λ < UL − δ0 − δ1 the AM algorithm converges to the
solution k = δ. For λ ≥ UL − δ0 − δ1 the AM algorithm
is unstable.

Proof. For max((L − 1)δ0 − δ1, (L − 1)δ1 − δ0) <
λ < UL − δ0 − δ1 from Lemma (1.1) we have that the
minimization of the problem 11 results in the following û

û =

{
−Û x ∈ [−L,−1]
Û x ∈ [0, L− 1]

(16)
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where Û = −λ+δ0+δ1L + U . The cost ||k ∗ û− f ||22, can be
then split in 6 regions

||k ∗ û− f ||22 =
∑
x((k ∗ û)[x]− f [x])2 =

(k[3]Û − (k[2] + k[1])Û − δ1 + U)2

+(L− 2)(−Û + U)2 + (−(k[3] + k[2])Û + k[1]Û + U − δ0)2
+(−k[3]Û + (k[2] + k[1])Û − U + δ1)

2

+(L− 2)(Û − U)2

+((k[3] + k[2])Û − k[1]Û − U + δ0)
2

(17)
The second and fifth terms do not depend on k, so only
the other terms contribute to the estimation of k. We then
compare the cost of each term for the no-blur solution
k[1] = 0, k[2] = 1, k[3] = 0 with any other solution
that satisfies the constraints k ≥ 0 and 1T k = 1. For the
no-blur solution we have

(k[3]Û − (k[2] + k[1])Û − δ1 + U)2 = (−Û − δ1 + U)2

(−(k[3] + k[2])Û + k[1]Û + U − δ0)2 = (−Û + U − δ0)2

(−k[3]Û + (k[2] + k[1])Û − U + δ1)
2 = (Û − U + δ1)

2

((k[3] + k[2])Û − k[1]Û − U + δ0)
2 = (Û − U + δ0)

2

For a feasible solution k we now show that each of terms
that contribute to the estimation of k in (17) is strictly larger
than the corresponding one for the trivial solution.

Following from λ > max((L−1)δ0−δ1, (L−1)δ1−δ0)
and from the definition of Û the inequalities −Û > −U +
δ0, Û < U − δ1, Û < U − δ0 and −Û > −U + δ1 hold.

From k[2] + k[1] ≤ 1 and −Û > −U + δ1 we have
−(k[2]+k[1])Û ≥ −Û > −U+δ1, and therefore−(k[2]+
k[1])Û − δ1+U > 0 and−Û − δ1+U > 0. The following
inequality then holds

(k[3]Û − (k[2] + k[1])Û − δ1 + U)2 >

(−k[3]Û − (k[2] + k[1])Û − δ1 + U)2 = (−Û − δ1 + U)2.
(18)

Similarly, using (k[3]+k[2]) ≤ 1 and−Û > −U+δ0 we
derive the inequalities −(k[3]+ k[2])Û ≥ −Û > −U + δ0,
−(k[3] + k[2])Û +U − δ0 > 0 and −Û +U − δ0 > 0, that
result in

(−(k[3] + k[2])Û + k[1]Û + U − δ0)2 >
(−(k[3] + k[2])Û − k[1]Û + U − δ0)2 = (−Û + U − δ0)2.

(19)
In the other two cases, from k[2] + k[1] ≤ 1 and Û <

U − δ1 we have (k[2]+k[1])Û ≤ Û < U − δ1, that implies
(k[2]+k[1])Û−U+δ1 < 0, Û1−U+δ1 < 0. and therefore

(−k[3]Û + (k[2] + k[1])Û − U + δ1)
2 >

(k[3]Û + (k[2] + k[1])Û − U + δ1)
2 = (Û − U + δ1)

2.
(20)

Finally, from (k[3]+k[2]) ≤ 1 and Û < U − δ0 we have
(k[3]+k[2])Û ≤ Û < U−δ0 , (k[3]+k[2])Û−U+δ0 < 0,

Û − U + δ0 < 0, and

((k[3] + k[2])Û − k[1]Û − U + δ0)
2 >

((k[3] + k[2])Û + k[1]Û − U + δ0)
2 = (Û − U + δ0)

2.
(21)

The above inequalities show how ||û− f ||22 ≤ ||k ∗ û−
f ||22, for any k such that k ≥ 0 and 1T k = 1. For λ ≥ UL−
δ0 − δ1 we have Û = 0, the cost becomes ||k ∗ û− f ||22 =
const. Since any feasible k is a solution of ||k ∗ û− f ||22 the
AM algorithm becomes unstable.
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Figure 1. Blurry Input.
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Figure 2. Restored image and blur with Xu and Jia [11].

Figure 3. Restored image and blur with our algorithm.
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Figure 4. Blurry Input.
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Figure 5. Restored image with Zhong et al. [13].
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Figure 6. Restored image with our algorithm.
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Figure 7. Blurry Input.
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Figure 8. Restored image with Cho and Lee [1].
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Figure 9. Restored image with Fergus et al. [3].
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Figure 10. Restored image with Krishnan et al. [6].
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Figure 11. Restored image with Xu and Jia [11].
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Figure 12. Restored image with Whyte et al. [10].
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Figure 13. Restored image with Shan et al. [9].
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Figure 14. Restored image with Hirsch et al. [5].
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Figure 15. Restored image with Xu et al. [12].
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Figure 16. Restored image with our algorithm.
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Figure 17. Blurry Input.
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Figure 18. Restored image with Cho and Lee [1].
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Figure 19. Restored image with Levin et al. [7].
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Figure 20. Restored image with Goldstein and Fattal [4].
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Figure 21. Restored image with Zhong et al. [13].
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Figure 22. Restored image with our algorithm.
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